74 research outputs found

    A Study of Shared-Memory Mutual Exclusion Protocols using CADP

    Get PDF
    International audienceMutual exclusion protocols are an essential building block of concurrent systems: indeed, such a protocol is required whenever a shared resource has to be protected against concurrent non-atomic accesses. Hence, many variants of mutual exclusion protocols exist in the shared-memory setting, such as Peterson's or Dekker's well-known protocols. Although the functional correctness of these protocols has been studied extensively, relatively little attention has been paid to their nonfunctional aspects, such as their performance in the long run. In this paper, we report on experiments with the performance evaluation of mutual exclusion protocols using Interactive Markov Chains. Steady-state analysis provides an additional criterion for comparing protocols, which complements the verification of their functional properties. We also carefully re-examined the functional properties, whose accurate formulation as temporal logic formulas in the action-based setting turns out to be quite involved

    On-the-Fly Model Checking for Extended Action-Based Probabilistic Operators

    Get PDF
    International audienceThe quantitative analysis of concurrent systems requires expressive and user-friendly property languages combining temporal, data-handling, and quantitative aspects. In this paper, we aim at facilitating the quantitative analysis of systems modeled as PTSs (Probabilistic Transition Systems) labeled by actions containing data values and probabilities. We propose a new regular probabilistic operator that computes the probability measure of a path specified by a generalized regular formula involving arbitrary computations on data values. This operator, which subsumes the Until operators of PCTL and their action-based counterparts, can provide useful quantitative information about paths having certain (e.g., peak) cost values. We integrated the regular probabilistic operator into MCL (Model Checking Language) and we devised an associated on-the-fly model checking method, based on a combined local resolution of linear and Boolean equation systems. We implemented the method in the EVALUATOR model checker of the CADP toolbox and experimented it on realistic PTSs modeling concurrent systems

    Synthesis of Safe, QoS Extendible, Application Specific Schedulers for Heterogeneous Real-Time Systems

    Get PDF
    We present a new scheduler architecture, which permits adding QoS (quality of service) policies to the scheduling decisions. We also present a new scheduling synthesis method which allows a designer to obtain a safe scheduler for a particular application. Our scheduler architecture and scheduler synthesis method can be used for heterogeneous applications where the tasks communicate through various synchronization primitives. We present a prototype implementation of this scheduler architecture and related mechanisms on top of an open-source OS (operating system) for embedded systems

    Is CADP an Applicable Formal Method?

    Get PDF
    International audienceCADP is a comprehensive toolbox implementing results of concurrency theory. This paper addresses the question, whether CADP qualifies as an applicable formal method, based on the experience of the authors and feedback reported by users

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    Coordinating multicore computing

    Get PDF

    Formal Verification of Distributed Systems

    Get PDF
    Fokkink, W.J. [Promotor
    corecore