538 research outputs found

    Compact electrothermal reliability modeling and experimental characterization of bipolar latchup in SiC and CoolMOS power MOSFETs

    Get PDF
    In this paper, a compact dynamic and fully coupled electrothermal model for parasitic BJT latchup is presented and validated by measurements. The model can be used to enhance the reliability of the latest generation of commercially available power devices. BJT latchup can be triggered by body-diode reverse-recovery hard commutation with high dV/dt or from avalanche conduction during unclamped inductive switching. In the case of body-diode reverse recovery, the base current that initiates BJT latchup is calculated from the solution of the ambipolar diffusion equation describing the minority carrier distribution in the antiparallel p-i-n body diode. For hard commutation with high dV/dt, the displacement current of the drain-body charging capacitance is critical for BJT latchup, whereas for avalanche conduction, the base current is calculated from impact ionization. The parasitic BJT is implemented in Simulink using the Ebers-Moll model and the temperature is calculated using a thermal network matched to the transient thermal impedance characteristic of the devices. This model has been applied to CoolMOS and SiC MOSFETs. Measurements show that the model correctly predicts BJT latchup during reverse recovery as a function of forward-current density and temperature. The model presented, when calibrated correctly by device manufacturers and applications engineers, is capable of benchmarking the robustness of power MOSFETs

    Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics

    Get PDF
    The intentional use of high power microwave (HPM) signals to disrupt microelectronic systems is a substantial threat to vital infrastructure. Conventional methods to assess HPM threats involve empirical testing of electronic equipment, which provides no insight into fundamental mechanisms of HPM induced upset. The work presented in this dissertation is part of a broad effort to develop more effective means for HPM threat assessment. Comprehensive experimental evaluation of CMOS digital electronics was performed to provide critical information of the elementary mechanisms that govern the dynamics of HPM effects. Results show that electrostatic discharge (ESD) protection devices play a significant role in the behavior of circuits irradiated by HPM pulses. The PN junctions of the ESD protection devices distort HPM waveforms producing DC voltages at the input of the core logic elements, which produces output bit errors and abnormal circuit power dissipation. The dynamic capacitance of these devices combines with linear parasitic elements to create resonant structures that produce nonlinear circuit dynamics such as spurious oscillations. The insight into the fundamental mechanisms this research has revealed will contribute substantially to the broader effort aimed at identifying and mitigating susceptibilities in critical systems. Also presented in this work is a modeling technique based on scalable analytical circuit models that accounts for the non-quasi-static behavior of the ESD protection PN junctions. The results of circuit simulations employing these device models are in excellent agreement with experimental measurements, and are capable of predicting the threshold of effect for HPM driven non-linear circuit dynamics. For the first time, a deterministic method of evaluating HPM effects based on physical, scalable device parameters has been demonstrated. The modeling presented in this dissertation can be easily integrated into design cycles and will greatly aid the development of electronic systems with improved HPM immunity

    Chaotic Oscillations in CMOS Integrated Circuits

    Get PDF
    Chaos is a purely mathematical term, describing a signal that is aperiodic and sensitive to initial conditions, but deterministic. Yet, engineers usually see it as an undesirable effect to be avoided in electronics. The first part of the dissertation deals with chaotic oscillation in complementary metal-oxide-semiconductor integrated circuits (CMOS ICs) as an effect behavior due to high power microwave or directed electromagnetic energy source. When the circuit is exposed to external electromagnetic sources, it has long been conjectured that spurious oscillation is generated in the circuits. In the first part of this work, we experimentally and numerically demonstrate that these spurious oscillations, or out-of-band oscillations are in fact chaotic oscillations. In the second part of the thesis, we exploit a CMOS chaotic oscillator in building a cryptographic source, a random number generator. We first demonstrate the presence of chaotic oscillation in standard CMOS circuits. At radio frequencies, ordinary digital circuits can show unexpected nonlinear responses. We evaluate a CMOS inverter coupled with electrostatic discharging (ESD) protection circuits, designed with 0.5 μm CMOS technology, for their chaotic oscillations. As the circuit is driven by a direct radio frequency injection, it exhibits a chaotic dynamics, when the input frequency is higher than the typical maximum operating frequency of the CMOS inverter. We observe an aperiodic signal, a broadband spectrum, and various bifurcations in the experimental results. We analytically discuss the nonlinear physical effects in the given circuit : ESD diode rectification, DC bias shift due to a non-quasi static regime operation of the ESD PN-junction diode, and a nonlinear resonant feedback current path. In order to predict these chaotic dynamics, we use a transistor-based model, and compare the model's performance with the experimental results. In order to verify the presence of chaotic oscillations mathematically, we build on an ordinary differential equation model with the circuit-related nonlinearities. We then calculate the largest Lyapunov exponents to verify the chaotic dynamics. The importance of this work lies in investigating chaotic dynamics of standard CMOS ICs that has long been conjectured. In doing so, we experimentally and numerically give evidences for the presence of chaotic oscillations. We then report on a random number generator design, in which randomness derives from a Boolean chaotic oscillator, designed and fabricated as an integrated circuit. The underlying physics of the chaotic dynamics in the Boolean chaotic oscillator is given by the Boolean delay equation. According to numerical analysis of the Boolean delay equation, a single node network generates chaotic oscillations when two delay inputs are incommensurate numbers and the transition time is fast. To test this hypothesis physically, a discrete Boolean chaotic oscillator is implemented. Using a CMOS 0.5 μm process, we design and fabricate a CMOS Boolean chaotic oscillator which consists of a core chaotic oscillator and a source follower buffer. Chaotic dynamics are verified using time and frequency domain analysis, and the largest Lyapunov exponents are calculated. The measured bit sequences do make a suitable randomness source, as determined via National Institute of Standards and Technology (NIST) standard statistical tests version 2.1

    Compact Models for Integrated Circuit Design

    Get PDF
    This modern treatise on compact models for circuit computer-aided design (CAD) presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models. Featuring exercise problems at the end of each chapter and extensive references at the end of the book, the text supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices. It ensures even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts

    Vertical Gallium Nitride Power Devices: Fabrication and Characterisation

    Get PDF
    Efficient power conversion is essential to face the continuously increasing energy consumption of our society. GaN based vertical power field effect transistors provide excellent performance figures for power-conversion switches, due to their capability of handling high voltages and current densities with very low area consumption. This work focuses on a vertical trench gate metal oxide semiconductor field effect transistor (MOSFET) with conceptional advantages in a device fabrication preceded GaN epitaxy and enhancement mode characteristics. The functional layer stack comprises from the bottom an n+/n- drift/p body/n+ source GaN layer sequence. Special attention is paid to the Mg doping of the p-GaN body layer, which is a complex topic by itself. Hydrogen passivation of magnesium plays an essential role, since only the active (hydrogen-free) Mg concentration determines the threshold voltage of the MOSFET and the blocking capability of the body diode. Fabrication specific challenges of the concept are related to the complex integration, formation of ohmic contacts to the functional layers, the specific implementation and processing scheme of the gate trench module and the lateral edge termination. The maximum electric field, which was achieved in the pn- junction of the body diode of the MOSFET is estimated to be around 2.1 MV/cm. From double-sweep transfer measurements with relatively small hysteresis, steep subthreshold slope and a threshold voltage of 3 - 4 V a reasonably good Al2O3/GaN interface quality is indicated. In the conductive state a channel mobility of around 80 - 100 cm2/Vs is estimated. This obtained value is comparable to device with additional overgrowth of the channel. Further enhancement of the OFF-state and ON-state characteristics is expected for optimization of the device termination and the high-k/GaN interface of the vertical trench gate, respectively. From the obtained results and dependencies key figures of an area efficient and competitive device design with thick drift layer is extrapolated. Finally, an outlook is given and advancement possibilities as well as technological limits are discussed.:1 Motivation and boundary conditions 1.1 A comparison of competitive semiconductor materials 1.2 Vertical GaN device concepts 1.3 Target application for power switches 2 The vertical GaN MOSFET concept 2.1 Incomplete ionization of dopants 2.2 The pseudo-vertical approach 2.3 Considerations for the device OFF-state 2.3.1 The pn-junction in reverse operation 2.3.2 The gate trench MIS-structure in OFF-state 2.3.3 Dimensional constraints and field plates 2.4 Static ON-state and switching considerations 2.4.1 The pn-junction in forward operation 2.4.2 Resistance contributions 2.4.3 Device model and channel mobility 2.4.4 Threshold voltage and subthreshold slope 2.4.5 Interface and dielectric trap states in wide band semiconductors 2.4.6 The body bias effect 3 Fabrication and characterisation 3.1 Growth methods for GaN substrates and layers 3.2 Substrates and the desired starting material 3.2.1 Physical and micro-structural characterisation 3.2.2 Dislocations and impurities 3.3 Pseudo- and true-vertical MOSFET fabrication 3.3.1 Processing routes 3.3.2 Inductively-coupled plasma etching 3.3.3 Process flow modification 3.4 Electrical characterisation, structures and process control 3.4.1 Current voltage characterisation 3.4.2 C(V) measurements and charge carrier profiling 3.4.3 Cooperative characterisation structures 4 Properties of the functional layers 4.1 Morphology of the MOVPE grown layers 4.2 Hydrogen out-diffusion treatment 4.3 Morphology of the n+-source layer grown by MBE 4.4 N-type doping of the functional layers 4.5 P-type GaN by magnesium doping 4.6 Structural properties after the etching and gate module formation 4.7 Electrical layer characterization 4.7.1 Gate dielectric and interface evaluation 5 Pseudo- and true vertical device operation 5.1 Influences of the metal-line sheet resistance 5.2 Formation and characterisation of ohmic contacts 5.2.1 Ohmic contacts to n-type GaN 5.2.2 Ohmic contacts to p-GaN 5.3 The pn- body diode 5.4 MOSFET operation 5.4.1 ON-state and turn-ON operation 5.4.2 The body bias effect on the threshold voltage 5.4.3 Device OFF-state 6 Summary and conclusion 6.1 Device performance 6.2 Current limits of the vertical device technology 6.3 Possibilities for advancements Bibliography A Appendix A.1 Deduction: Forward diffusion current of the pn-diode A.2 Deduction: Operation regions in the EKV model Figures Tables Abbreviations Symbols Postamble and Acknowledgemen

    SiC MOSFET and GaN FET in high voltage switching applications

    Get PDF
    For several decades, silicon-based semiconductor devices, such as Si MOSFETs have been the main choice for switching applications. However, their level of performance is approaching its maximum potential, and further development becomes increasingly challenging. As a result, semiconductor manufacturers and the electronics industry are exploring new technologies to meet current requirements. One promising option is the use of WBG (Wide Band Gap) devices, such as GaN FETs and SiC MOSFETs, which have gained attention due to their superior performance characteristics. Compared to traditional Si transistors, WBG devices can withstand higher voltages and tem-peratures, are faster, can be packed in smaller sizes, and are more efficient. This study aims to serve as a guide for designers seeking information on the technology and usage of WBG transistors, particularly in high voltage switching applications. The study in-cludes an examination of the structures of SiC MOSFETs and GaN FETs, as well as their most important electrical characteristics. Additionally, the efficiency of an LCC converter was measured to compare the performance of various FET types, with a specific interest in the use of WBG devices in soft switching applications. Scientific articles, application notes, and datasheets were investigated to provide a thorough understanding of the theory behind SiC MOSFETs and GaN FETs. According to resources, the primary SiC MOSFET and GaN FET technologies suitable for high voltage switching are planar SiC MOSFET, trench SiC MOSFET, p-GaN FET and GaN/Si cascode transistor. These devices are currently available with breakdown voltages of 1700 V (planar SiC MOSFET), 2000 V (trench SiC MOSFET), 650 V (p-GaN FET) and 900 V (GaN/Si cascode transistor). The efficiency of an LCC converter with a maximum output power of 40 W was measured using 1500 V Si MOSFET, 1700 V planar SiC MOSFET, 1700 V trench SiC MOSFET, and 900 V GaN/Si cascode transistor. A constant load of 1 A was used, and the input voltage was incre-mentally increased from 300 V to 900 V in 100 V steps. According to results, using planar and trench SiC MOSFETs, LCC converter had the highest efficiency, reaching up to 89,6 % while Si MOSFET exhibited slightly lower efficiency, which was 87,7 % at its best. GaN/Si cascode tran-sistors showed comparable efficiency to SiC MOSFETs at lower input voltages but fell signifi-cantly behind as the voltage increased, having eventually much worse efficiency than Si MOSFET.Useiden vuosikymmenien ajan pii-pohjaiset puolijohteet, kuten pii MOSFETit, ovat olleet pääasiallinen teknologia katkojasovelluksissa. Niiden suorituskyky lähestyy kuitenkin ylärajaa, ja niiden kehittäminen käy yhä vaikeammaksi. Tämän vuoksi puolijohdevalmistajat ja elektroniikkateollisuus etsivät uusia teknologioita täyttää nykyiset vaatimukset. Yksi lupaava teknologia ovat laajan energiavyön puolijohteet, kuten galliumnitridi FETit ja piikarbidi MOSFETit. Viime vuosina ne ovat herättäneet paljon huomiota niiden ylivoimaisten ominaisuuksien vuoksi. Verrattuna perinteisiin pii MOSFETeihin, laajan energiavyön transistorit kestävät suurempia jännitteitä ja lämpötiloja, ovat nopeampia ja ne voidaan pakata pienempään kokoon. Lisäksi ne ovat tehokkaampia. Tämä diplomityö pyrkii toimimaan oppaana elektroniikkasuunnittelijoille, jotka etsivät tietoa laajan energiavyön transistoreista ja niiden käytöstä erityisesti suurjännitekatkojasovelluksissa.Työssä tarkastellaan piikarbidi MOSFETien ja galliumnitridi FETien rakenteita sekä niiden tärkeimpiä sähköisiä ominaisuuksia. Lisäksi mitattiin kelaan ja kahteen kondensaattoriin perustuvan LCC resonanssiteholähteen hyötysuhde eri FET-tyypeillä, koska haluttiin saada tietoa laajan energiavyön transistorien käytöstä pehmeässä jännitteen katkonnassa. Tiedon keräämiseksi tutkittiin tieteellisiä artikkeleita, sovellusohjeita ja datalehtiä. Lähdeaineiston perusteella pääasialliset piikarbidi MOSFETien ja galliumnitridi FETien teknologiat suurjännitesovellusten alueella ovat planaarinen piikarbidi MOSFET, erityiseen kaivanto teknologiaan (trench) perustuva piikarbidi MOSFET, p-tyypin galliumnitridi FET ja galliumnitridi/pii kaskadi transistori. Tällä hetkellä näitä teknologioita on kaupallisesti saatavilla enimmillään 1700 V (planaarinen piikarbidi MOSFET), 2000 V (kaivanto piikarbidi MOSFET), 650 V (p-tyypin galliumnitridi FET) ja 900 V (galliumnitridi/pii kaskadi transistori) jännitteillä. Nimellisteholtaan 40 W LCC resonanssi teholähteen hyötysuhde mitattiin 1500 V pii MOSFETeilla, 1700 V planaarisilla piikarbidi MOSFETeilla, 1700 V kaivanto piikarbidi MOSFETeilla ja 900 V gallium-nitridi/pii kaskadi transistoreilla. Kuormana käytettiin 1 A vakiokuormaa ja tulojännitettä nostettiin asteittain 300 voltista 900 voltiin 100 voltin nostoin. Tulosten mukaan paras hyötysuhde oli 89,6 %, joka mitattiin planaarisella piikarbidi MOSFETilla ja kaivanto piikarbidi MOSFETilla. Pii MOSFETien tapauksessa hyötysuhde oli hieman huonompi, ollen parhaimmillaan 87,7 %. Alhaisilla jännitteillä galliumnitridi/pii kaskadi transistorien hyötysuhde oli verrattavissa piikarbidi MOSFETeihin, mutta hyötysuhde laski jännitettä nostettaessa, ollen lopulta merkittävästi huonompi kuin pii MOSFETeilla

    Design, Characterization and Analysis of Component Level Electrostatic Discharge (ESD) Protection Solutions

    Get PDF
    Electrostatic Discharges (ESD) is a significant hazard to electronic components and systems. Based on a specific process technology, a given circuit application requires a customized ESD consideration that meets all the requirements such as the core circuit\u27s operating condition, maximum accepted leakage current, breakdown conditions for the process and overall device sizes. In every several years, there will be a new process technology becomes mature, and most of those new technology requires custom design of effective ESD protection solution. And usually the design window will shrinks due to the evolving of the technology becomes smaller and smaller. The ESD related failure is a major IC reliability concern and results in a loss of millions dollars each year in the semiconductor industry. To emulate the real word stress condition, several ESD stress models and test methods have been developed. The basic ESD models are Human Body model (HBM), Machine Mode (MM), and Charge Device Model (CDM). For the system-level ESD robustness, it is defined by different standards and specifications than component-level ESD requirements. International Electrotechnical Commission (IEC) 61000-4-2 has been used for the product and the Human Metal Model (HMM) has been used for the system at the wafer level. Increasingly stringent design specifications are forcing original equipment manufacturers (OEMs) to minimize the number of off-chip components. This is the case in emerging multifunction mobile, industrial, automotive and healthcare applications. It requires a high level of ESD robustness and the integrated circuit (IC) level, while finding ways to streamline the ESD characterization during early development cycle. To enable predicting the ESD performance of IC\u27s pins that are directly exposed to a system-level stress condition, a new the human metal model (HMM) test model has been introduced. In this work, a new testing methodology for product-level HMM characterization is introduced. This testing framework allows for consistently identifying ESD-induced failures in a product, substantially simplifying the testing process, and significantly reducing the product evaluation time during development cycle. It helps eliminates the potential inaccuracy provided by the conventional characterization methodology. For verification purposes, this method has been applied to detect the failures of two different products. Addition to the exploration of new characterization methodology that provides better accuracy, we also have looked into the protection devices itself. ICs for emerging high performance precision data acquisition and transceivers in industrial, automotive and wireless infrastructure applications require effective and ESD protection solutions. These circuits, with relatively high operating voltages at the Input/Output (I/O) pins, are increasingly being designed in low voltage Complementary Metal-Oxide-Semiconductor (CMOS) technologies to meet the requirements of low cost and large scale integration. A new dual-polarity SCR optimized for high bidirectional blocking voltages, high trigger current and low capacitance is realized in a sub 3-V, 180-nm CMOS process. This ESD device is designed for a specific application where the operating voltage at the I/O is larger than that of the core circuit. For instance, protecting high voltage swing I/Os in CMOS data acquisition system (DAS) applications. In this reference application, an array of thin film resistors voltage divider is directly connected to the interface pin, reducing the maximum voltage that is obtained at the core device input down to ± 1-5 V. Its ESD characteristics, including the trigger voltage and failure current, are compared against those of a typical CMOS-based SCR. Then, we have looked into the ESD protection designs into more advanced technology, the 28-nm CMOS. An ESD protection design builds on the multiple discharge-paths ESD cell concept and focuses the attention on the detailed design, optimization and realization of the in-situ ESD protection cell for IO pins with variable operation voltages. By introducing different device configurations fabricated in a 28-nm CMOS process, a greater flexibility in the design options and design trade-offs can be obtained in the proposed topology, thus achieving a higher integration and smaller cell size definition for multi-voltage compatibility interface ESD protection applications. This device is optimized for low capacitance and synthesized with the circuit IO components for in-situ ESD protection in communication interface applications developed in a 28-nm, high-k, and metal-gate CMOS technology. ESD devices have been used in different types of applications and also at different environment conditions, such as high temperature. At the last section of this research work, we have performed an investigation of several different ESD devices\u27 performance under various temperature conditions. And it has been shown that the variations of the device structure can results different ESD performance, and some devices can be used at the high temperature and some cannot. And this investigation also brings up a potential threat to the current ESD protection devices that they might be very vulnerable to the latch-up issue at the higher temperature range

    シリコンカーバイドパワーMOSFETsの破壊耐量ならびにそのメカニズムに関する研究

    Get PDF
    筑波大学 (University of Tsukuba)201
    corecore