40,988 research outputs found

    Regression and Singular Value Decomposition in Dynamic Graphs

    Full text link
    Most of real-world graphs are {\em dynamic}, i.e., they change over time. However, while problems such as regression and Singular Value Decomposition (SVD) have been studied for {\em static} graphs, they have not been investigated for {\em dynamic} graphs, yet. In this paper, we introduce, motivate and study regression and SVD over dynamic graphs. First, we present the notion of {\em update-efficient matrix embedding} that defines the conditions sufficient for a matrix embedding to be used for the dynamic graph regression problem (under l2l_2 norm). We prove that given an n×mn \times m update-efficient matrix embedding (e.g., adjacency matrix), after an update operation in the graph, the optimal solution of the graph regression problem for the revised graph can be computed in O(nm)O(nm) time. We also study dynamic graph regression under least absolute deviation. Then, we characterize a class of matrix embeddings that can be used to efficiently update SVD of a dynamic graph. For adjacency matrix and Laplacian matrix, we study those graph update operations for which SVD (and low rank approximation) can be updated efficiently
    • …
    corecore