7,955 research outputs found

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and XβŠ†VX\subseteq V, if Ξ΄X(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set MβŠ†VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if Ξ΄M(v)β‰₯Ξ΄V(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:Vβ†’{βˆ’1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=βˆ‘v∈N(v)f(v)β‰₯tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set SβŠ†VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if Ξ΄S(v)β‰₯Ξ΄Vβˆ’S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    On dynamic monopolies of graphs: the average and strict majority thresholds

    Full text link
    Let GG be a graph and Ο„:V(G)β†’Nβˆͺ{0}{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N}\cup \{0\} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be a dynamic monopoly corresponding to (G,Ο„)(G, \tau) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i∈0,...,kβˆ’1i\in {0, ..., k-1}, each vertex vv in Di+1D_{i+1} has at least Ο„(v)\tau(v) neighbors in D0βˆͺ...βˆͺDiD_0\cup ... \cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence in social networks. In this paper we first obtain a lower bound for the smallest size of any dynamic monopoly in terms of the average threshold and the order of graph. Also we obtain an upper bound in terms of the minimum vertex cover of graphs. Then we derive the upper bound ∣G∣/2|G|/2 for the smallest size of any dynamic monopoly when the graph GG contains at least one odd vertex, where the threshold of any vertex vv is set as ⌈(deg(v)+1)/2βŒ‰\lceil (deg(v)+1)/2 \rceil (i.e. strict majority threshold). This bound improves the best known bound for strict majority threshold. We show that the latter bound can be achieved by a polynomial time algorithm. We also show that Ξ±β€²(G)+1\alpha'(G)+1 is an upper bound for the size of strict majority dynamic monopoly, where Ξ±β€²(G)\alpha'(G) stands for the matching number of GG. Finally, we obtain a basic upper bound for the smallest size of any dynamic monopoly, in terms of the average threshold and vertex degrees. Using this bound we derive some other upper bounds

    On dynamic monopolies of graphs with general thresholds

    Get PDF
    Let GG be a graph and Ο„:V(G)β†’N{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be dynamic monopoly (or simply dynamo) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i=1,...,kβˆ’1i=1,..., k-1 each vertex vv in Di+1D_{i+1} has at least t(v)t(v) neighbors in D0βˆͺ...βˆͺDiD_0\cup ...\cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence such as disease or belief in social networks. We denote the smallest size of any dynamic monopoly of GG, with a given threshold assignment, by dyn(G)dyn(G). In this paper we first define the concept of a resistant subgraph and show its relationship with dynamic monopolies. Then we obtain some lower and upper bounds for the smallest size of dynamic monopolies in graphs with different types of thresholds. Next we introduce dynamo-unbounded families of graphs and prove some related results. We also define the concept of a homogenious society that is a graph with probabilistic thresholds satisfying some conditions and obtain a bound for the smallest size of its dynamos. Finally we consider dynamic monopoly of line graphs and obtain some bounds for their sizes and determine the exact values in some special cases
    • …
    corecore