475 research outputs found

    Dissecting Ponzi schemes on Ethereum: identification, analysis, and impact

    Full text link
    Ponzi schemes are financial frauds which lure users under the promise of high profits. Actually, users are repaid only with the investments of new users joining the scheme: consequently, a Ponzi scheme implodes soon after users stop joining it. Originated in the offline world 150 years ago, Ponzi schemes have since then migrated to the digital world, approaching first the Web, and more recently hanging over cryptocurrencies like Bitcoin. Smart contract platforms like Ethereum have provided a new opportunity for scammers, who have now the possibility of creating "trustworthy" frauds that still make users lose money, but at least are guaranteed to execute "correctly". We present a comprehensive survey of Ponzi schemes on Ethereum, analysing their behaviour and their impact from various viewpoints

    The Structural Role of Smart Contracts and Exchanges in the Centralisation of Ethereum-Based Cryptoassets

    Full text link
    In this paper, we use the methods of networks science to analyse the transaction networks of tokens running on the Ethereum blockchain. We start with a deep dive on four of them: Ampleforth (AMP), Basic Attention Token (BAT), Dai (DAI) and Uniswap (UNI). We study two types of blockchain addresses, smart contracts (SC), which run code, and externally owned accounts (EOA), run by human users, or off-chain code, with the corresponding private keys. We use preferential attachment and network dismantling strategies to evaluate their importance for the network structure. Subsequently, we expand our view to all ERC-20 tokens issued on the Ethereum network. We first study multilayered networks composed of Ether (ETH) and individual tokens using a dismantling approach to assess how the deconstruction starting from one network affects the other. Finally, we analyse the Ether network and Ethereum-based token networks to find similarities between sets of high-degree nodes. For this purpose, we use both the traditional Jaccard Index and a new metric that we introduce, the Ordered Jaccard Index (OJI), which considers the order of the elements in the two sets that are compared. Our findings suggest that smart contracts and exchange-related addresses play a structural role in transaction networks both in DeFi and Ethereum. The presence in the network of nodes associated to addresses of smart contracts and exchanges is positively correlated with the success of the token network measured in terms of network size and market capitalisation. These nodes play a fundamental role in the centralisation of the supposedly decentralised finance (DeFi) ecosystem: without them, their networks would quickly collapse

    Decentralization in Bitcoin and Ethereum Networks

    Full text link
    Blockchain-based cryptocurrencies have demonstrated how to securely implement traditionally centralized systems, such as currencies, in a decentralized fashion. However, there have been few measurement studies on the level of decentralization they achieve in practice. We present a measurement study on various decentralization metrics of two of the leading cryptocurrencies with the largest market capitalization and user base, Bitcoin and Ethereum. We investigate the extent of decentralization by measuring the network resources of nodes and the interconnection among them, the protocol requirements affecting the operation of nodes, and the robustness of the two systems against attacks. In particular, we adapted existing internet measurement techniques and used the Falcon Relay Network as a novel measurement tool to obtain our data. We discovered that neither Bitcoin nor Ethereum has strictly better properties than the other. We also provide concrete suggestions for improving both systems.Comment: Financial Cryptography and Data Security 201

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Sustainable Development Report: Blockchain, the Web3 & the SDGs

    Get PDF
    This is an output paper of the applied research that was conducted between July 2018 - October 2019 funded by the Austrian Development Agency (ADA) and conducted by the Research Institute for Cryptoeconomics at the Vienna University of Economics and Business and RCE Vienna (Regional Centre of Expertise on Education for Sustainable Development).Series: Working Paper Series / Institute for Cryptoeconomics / Interdisciplinary Researc

    Blockchain Regulations and Decentralized Applications: Panel Report from AMCIS 2018

    Get PDF
    Blockchain represents one of the 21st century’s most impactful inventions. In addition to creating cryptocurrencies such as Bitcoin, this technology enables smart contract functionality and supports decentralized, secure, and private transactions. By design, blockchains enable decentralized functionality for many of today’s business applications and transform traditional centralized information systems. In this paper, we summarize four research areas that will appeal to IS scholars that a panel at AMCIS 2018 discussed: 1) cryptocurrency regulation, 2) Etherisc (a smart contract-based application), 3) decentralized blockchain applications in healthcare, and 4) Bitcoin as a blockchain application and issues with decentralization. To account for the European Union’s General Data Protection Regulation’s requirements to provide people with the right to be forgotten and modify personal data, we modified Pedersen et al.’s (2019) framework to accommodate off-chain data storage requirements. We deployed Pedersen et al.’s (2019) modified framework to evaluate whether one can use blockchains for three different applications. We summarize several research questions and present a research agenda that emerged from the issues highlighted during the panel discussion
    • …
    corecore