2,792 research outputs found

    Performance Characterization of In-Memory Data Analytics on a Modern Cloud Server

    Full text link
    In last decade, data analytics have rapidly progressed from traditional disk-based processing to modern in-memory processing. However, little effort has been devoted at enhancing performance at micro-architecture level. This paper characterizes the performance of in-memory data analytics using Apache Spark framework. We use a single node NUMA machine and identify the bottlenecks hampering the scalability of workloads. We also quantify the inefficiencies at micro-architecture level for various data analysis workloads. Through empirical evaluation, we show that spark workloads do not scale linearly beyond twelve threads, due to work time inflation and thread level load imbalance. Further, at the micro-architecture level, we observe memory bound latency to be the major cause of work time inflation.Comment: Accepted to The 5th IEEE International Conference on Big Data and Cloud Computing (BDCloud 2015

    Runtime-guided mitigation of manufacturing variability in power-constrained multi-socket NUMA nodes

    Get PDF
    This work has been supported by the Spanish Government (Severo Ochoa grants SEV2015-0493, SEV-2011-00067), by the Spanish Ministry of Science and Innovation (contracts TIN2015-65316-P), by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272), by the RoMoL ERC Advanced Grant (GA 321253) and the European HiPEAC Network of Excellence. M. Moretó has been partially supported by the Ministry of Economy and Competitiveness under Juan de la Cierva postdoctoral fellowship number JCI-2012-15047. M. Casas is supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the Cofund programme of the Marie Curie Actions of the 7th R&D Framework Programme of the European Union (Contract 2013 BP B 00243). This work was also partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-CONF-689878). Finally, the authors are grateful to the reviewers for their valuable comments, to the RoMoL team, to Xavier Teruel and Kallia Chronaki from the Programming Models group of BSC and the Computation Department of LLNL for their technical support and useful feedback.Peer ReviewedPostprint (published version

    Tiling Optimization For Nested Loops On Gpus

    Get PDF
    Optimizing nested loops has been considered as an important topic and widely studied in parallel programming. With the development of GPU architectures, the performance of these computations can be significantly boosted with the massively parallel hardware. General matrix-matrix multiplication is a typical example where executing such an algorithm on GPUs outperforms the performance obtained on other multicore CPUs. However, achieving ideal performance on GPUs usually requires a lot of human effort to manage the massively parallel computation resources. Therefore, the efficient implementation of optimizing nested loops on GPUs became a popular topic in recent years. We present our work based on the tiling strategy in this dissertation to address three kinds of popular problems. Different kinds of computations bring in different latency issues where dependencies in the computation may result in insufficient parallelism and the performance of computations without dependencies may be degraded due to intensive memory accesses. In this thesis, we tackle the challenges for each kind of problem and believe that other computations performed in nested loops can also benefit from the presented techniques. We improve a parallel approximation algorithm for the problem of scheduling jobs on parallel identical machines to minimize makespan with a high-dimensional tiling method. The algorithm is designed and optimized for solving this kind of problem efficiently on GPUs. Because the algorithm is based on a higher-dimensional dynamic programming approach, where dimensionality refers to the number of variables in the dynamic programming equation characterizing the problem, the existing implementation suffers from the pain of dimensionality and cannot fully utilize GPU resources. We design a novel data-partitioning technique to accelerate the higher-dimensional dynamic programming component of the algorithm. Both the load imbalance and exceeding memory capacity issues are addressed in our GPU solution. We present performance results to demonstrate how our proposed design improves the GPU utilization and makes it possible to solve large higher-dimensional dynamic programming problems within the limited GPU memory. Experimental results show that the GPU implementation achieves up to 25X speedup compared to the best existing OpenMP implementation. In addition, we focus on optimizing wavefront parallelism on GPUs. Wavefront parallelism is a well-known technique for exploiting the concurrency of applications that execute nested loops with uniform data dependencies. Recent research on such applications, which range from sequence alignment tools to partial differential equation solvers, has used GPUs to benefit from the massively parallel computing resources. Wavefront parallelism faces the load imbalance issue because the parallelism is passing along the diagonal. The tiling method has been introduced as a popular solution to address this issue. However, the use of hyperplane tiles increases the cost of synchronization and leads to poor data locality. In this paper, we present a highly optimized implementation of the wavefront parallelism technique that harnesses the GPU architecture. A balanced workload and maximum resource utilization are achieved with an extremely low synchronization overhead. We design the kernel configuration to significantly reduce the minimum number of synchronizations required and also introduce an inter-block lock to minimize the overhead of each synchronization. We evaluate the performance of our proposed technique for four different applications: Sequence Alignment, Edit Distance, Summed-Area Table, and 2DSOR. The performance results demonstrate that our method achieves speedups of up to six times compared to the previous best-known hyperplane tiling-based GPU implementation. Finally, we extend the hyperplane tiling to high order 2D stencil computations. Unlike wavefront parallelism that has dependence in the spatial dimension, dependence remains only across two adjacent time steps along the temporal dimension in stencil computations. Even if the no-dependence property significantly increases the parallelism obtained in the spatial dimensions, full parallelism may not be efficient on GPUs. Due to the limited cache capacity owned by each streaming multiprocessor, full parallelism can be obtained on global memory only, which has high latency to access. Therefore, the tiling technique can be applied to improve the memory efficiency by caching the small tiled blocks. Because the widely studied tiling methods, like overlapped tiling and split tiling, have considerable computation overhead caused by load imbalance or extra operations, we propose a time skewed tiling method, which is designed upon the GPU architecture. We work around the serialized computation issue and coordinate the intra-tile parallelism and inter-tile parallelism to minimize the load imbalance caused by pipelined processing. Moreover, we address the high-order stencil computations in our development, which has not been comprehensively studied. The proposed method achieves up to 3.5X performance improvement when the stencil computation is performed on a Moore neighborhood pattern

    A review of High Performance Computing foundations for scientists

    Full text link
    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and discuss essential aspects to take into account when running scientific calculations in computers.Comment: 33 page

    Towards resource-aware computing for task-based runtimes and parallel architectures

    Get PDF
    Current large scale systems show increasing power demands, to the point that it has become a huge strain on facilities and budgets. The increasing restrictions in terms of power consumption of High Performance Computing (HPC) systems and data centers have forced hardware vendors to include power capping capabilities in their commodity processors. Power capping opens up new opportunities for applications to directly manage their power behavior at user level. However, constraining power consumption causes the individual sockets of a parallel system to deliver different performance levels under the same power cap, even when they are equally designed, which is an effect caused by manufacturing variability. Modern chips suffer from heterogeneous power consumption due to manufacturing issues, a problem known as manufacturing or process variability. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this thesis we show that parallel systems benefit from taking into account the consequences of manufacturing variability, in terms of both performance and energy efficiency. In order to evaluate our work we have also implemented our own task-based version of the PARSEC benchmark suite. This allows to test our methodology using state-of-the-art parallelization techniques and real world workloads. We present two approaches to mitigate manufacturing variability, by power redistribution at runtime level and by power- and variability-aware job scheduling at system-wide level. A parallel runtime system can be used to effectively deal with this new kind of performance heterogeneity by compensating the uneven effects of power capping. In the context of a NUMA node composed of several multi core sockets, our system is able to optimize the energy and concurrency levels assigned to each socket to maximize performance. Applied transparently within the parallel runtime system, it does not require any programmer interaction like changing the application source code or manually reconfiguring the parallel system. We compare our novel runtime analysis with an offline approach and demonstrate that it can achieve equal performance at a fraction of the cost. The next approach presented in this theis, we show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensures that power consumption stays under a system wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications.Los sistemas modernos de gran escala muestran crecientes demandas de energía, hasta el punto de que se ha convertido en una gran presión para las instalaciones y los presupuestos. Las restricciones crecientes de consumo de energía de los sistemas de alto rendimiento (HPC) y los centros de datos han obligado a los proveedores de hardware a incluir capacidades de limitación de energía en sus procesadores. La limitación de energía abre nuevas oportunidades para que las aplicaciones administren directamente su comportamiento de energía a nivel de usuario. Sin embargo, la restricción en el consumo de energía de sockets individuales de un sistema paralelo resulta en diferentes niveles de rendimiento, por el mismo límite de potencia, incluso cuando están diseñados por igual. Esto es un efecto causado durante el proceso de la fabricación. Los chips modernos sufren de un consumo de energía heterogéneo debido a problemas de fabricación, un problema conocido como variabilidad del proceso o fabricación. Como resultado, los sistemas que no consideran este tipo de variabilidad causada por problemas de fabricación conducen a degradaciones del rendimiento y desperdicio de energía. Para evitar dicho impacto negativo, los usuarios y administradores del sistema deben contrarrestar activamente cualquier variabilidad de fabricación. En esta tesis, demostramos que los sistemas paralelos se benefician de tener en cuenta las consecuencias de la variabilidad de la fabricación, tanto en términos de rendimiento como de eficiencia energética. Para evaluar nuestro trabajo, también hemos implementado nuestra propia versión del paquete de aplicaciones de prueba PARSEC, basada en tareas paralelos. Esto permite probar nuestra metodología utilizando técnicas avanzadas de paralelización con cargas de trabajo del mundo real. Presentamos dos enfoques para mitigar la variabilidad de fabricación, mediante la redistribución de la energía a durante la ejecución de las aplicaciones y mediante la programación de trabajos a nivel de todo el sistema. Se puede utilizar un sistema runtime paralelo para tratar con eficacia este nuevo tipo de heterogeneidad de rendimiento, compensando los efectos desiguales de la limitación de potencia. En el contexto de un nodo NUMA compuesto de varios sockets y núcleos, nuestro sistema puede optimizar los niveles de energía y concurrencia asignados a cada socket para maximizar el rendimiento. Aplicado de manera transparente dentro del sistema runtime paralelo, no requiere ninguna interacción del programador como cambiar el código fuente de la aplicación o reconfigurar manualmente el sistema paralelo. Comparamos nuestro novedoso análisis de runtime con los resultados óptimos, obtenidos de una análisis manual exhaustiva, y demostramos que puede lograr el mismo rendimiento a una fracción del costo. El siguiente enfoque presentado en esta tesis, muestra que es posible predecir el impacto de la variabilidad de fabricación en aplicaciones específicas mediante el uso de modelos de predicción de potencia conscientes de la variabilidad. Basados ​​en estos modelos de predicción de energía, proponemos dos políticas de programación de trabajos que consideran los efectos de la variabilidad de fabricación para cada aplicación y que aseguran que el consumo se mantiene bajo un presupuesto de energía de todo el sistema. Evaluamos nuestras políticas con diferentes presupuestos de energía y escenarios de tráfico, que consisten en aplicaciones paralelas que corren en uno o varios nodos

    Performance Controlled Power Optimization for Virtualized Internet Datacenters

    Get PDF
    Modern data centers must provide performance assurance for complex system software such as web applications. In addition, the power consumption of data centers needs to be minimized to reduce operating costs and avoid system overheating. In recent years, more and more data centers start to adopt server virtualization strategies for resource sharing to reduce hardware and operating costs by consolidating applications previously running on multiple physical servers onto a single physical server. In this dissertation, several power efficient algorithms are proposed to effectively reduce server power consumption while achieving the required application-level performance for virtualized servers. First, at the server level this dissertation proposes two control solutions based on dynamic voltage and frequency scaling (DVFS) technology and request batching technology. The two solutions share a performance balancing technique that maintains performance balancing among all virtual machines so that they can have approximately the same performance level relative to their allowed peak values. Then, when the workload intensity is light, we adopt the request batching technology by using a controller to determine the time length for periodically batching incoming requests and putting the processor into sleep mode. When the workload intensity changes from light to moderate, request batching is automatically switched to DVFS to increase the processor frequency for performance guarantees. Second, at the datacenter level, this dissertation proposes a performance-controlled power optimization solution for virtualized server clusters with multi-tier applications. The solution utilizes both DVFS and server consolidation strategies for maximized power savings by integrating feedback control with optimization strategies. At the application level, a multi-input-multi-output controller is designed to achieve the desired performance for applications spanning multiple VMs, on a short time scale, by reallocating the CPU resources and DVFS. At the cluster level, a power optimizer is proposed to incrementally consolidate VMs onto the most power-efficient servers on a longer time scale. Finally, this dissertation proposes a VM scheduling algorithm that exploits core performance heterogeneity to optimize the overall system energy efficiency. The four algorithms at the three different levels are demonstrated with empirical results on hardware testbeds and trace-driven simulations and compared against state-of-the-art baselines

    Power Bounded Computing on Current & Emerging HPC Systems

    Get PDF
    Power has become a critical constraint for the evolution of large scale High Performance Computing (HPC) systems and commercial data centers. This constraint spans almost every level of computing technologies, from IC chips all the way up to data centers due to physical, technical, and economic reasons. To cope with this reality, it is necessary to understand how available or permissible power impacts the design and performance of emergent computer systems. For this reason, we propose power bounded computing and corresponding technologies to optimize performance on HPC systems with limited power budgets. We have multiple research objectives in this dissertation. They center on the understanding of the interaction between performance, power bounds, and a hierarchical power management strategy. First, we develop heuristics and application aware power allocation methods to improve application performance on a single node. Second, we develop algorithms to coordinate power across nodes and components based on application characteristic and power budget on a cluster. Third, we investigate performance interference induced by hardware and power contentions, and propose a contention aware job scheduling to maximize system throughput under given power budgets for node sharing system. Fourth, we extend to GPU-accelerated systems and workloads and develop an online dynamic performance & power approach to meet both performance requirement and power efficiency. Power bounded computing improves performance scalability and power efficiency and decreases operation costs of HPC systems and data centers. This dissertation opens up several new ways for research in power bounded computing to address the power challenges in HPC systems. The proposed power and resource management techniques provide new directions and guidelines to green exscale computing and other computing systems

    Towards resource-aware computing for task-based runtimes and parallel architectures

    Get PDF
    Current large scale systems show increasing power demands, to the point that it has become a huge strain on facilities and budgets. The increasing restrictions in terms of power consumption of High Performance Computing (HPC) systems and data centers have forced hardware vendors to include power capping capabilities in their commodity processors. Power capping opens up new opportunities for applications to directly manage their power behavior at user level. However, constraining power consumption causes the individual sockets of a parallel system to deliver different performance levels under the same power cap, even when they are equally designed, which is an effect caused by manufacturing variability. Modern chips suffer from heterogeneous power consumption due to manufacturing issues, a problem known as manufacturing or process variability. As a result, systems that do not consider such variability caused by manufacturing issues lead to performance degradations and wasted power. In order to avoid such negative impact, users and system administrators must actively counteract any manufacturing variability. In this thesis we show that parallel systems benefit from taking into account the consequences of manufacturing variability, in terms of both performance and energy efficiency. In order to evaluate our work we have also implemented our own task-based version of the PARSEC benchmark suite. This allows to test our methodology using state-of-the-art parallelization techniques and real world workloads. We present two approaches to mitigate manufacturing variability, by power redistribution at runtime level and by power- and variability-aware job scheduling at system-wide level. A parallel runtime system can be used to effectively deal with this new kind of performance heterogeneity by compensating the uneven effects of power capping. In the context of a NUMA node composed of several multi core sockets, our system is able to optimize the energy and concurrency levels assigned to each socket to maximize performance. Applied transparently within the parallel runtime system, it does not require any programmer interaction like changing the application source code or manually reconfiguring the parallel system. We compare our novel runtime analysis with an offline approach and demonstrate that it can achieve equal performance at a fraction of the cost. The next approach presented in this theis, we show that it is possible to predict the impact of this variability on specific applications by using variability-aware power prediction models. Based on these power models, we propose two job scheduling policies that consider the effects of manufacturing variability for each application and that ensures that power consumption stays under a system wide power budget. We evaluate our policies under different power budgets and traffic scenarios, consisting of both single- and multi-node parallel applications.Los sistemas modernos de gran escala muestran crecientes demandas de energía, hasta el punto de que se ha convertido en una gran presión para las instalaciones y los presupuestos. Las restricciones crecientes de consumo de energía de los sistemas de alto rendimiento (HPC) y los centros de datos han obligado a los proveedores de hardware a incluir capacidades de limitación de energía en sus procesadores. La limitación de energía abre nuevas oportunidades para que las aplicaciones administren directamente su comportamiento de energía a nivel de usuario. Sin embargo, la restricción en el consumo de energía de sockets individuales de un sistema paralelo resulta en diferentes niveles de rendimiento, por el mismo límite de potencia, incluso cuando están diseñados por igual. Esto es un efecto causado durante el proceso de la fabricación. Los chips modernos sufren de un consumo de energía heterogéneo debido a problemas de fabricación, un problema conocido como variabilidad del proceso o fabricación. Como resultado, los sistemas que no consideran este tipo de variabilidad causada por problemas de fabricación conducen a degradaciones del rendimiento y desperdicio de energía. Para evitar dicho impacto negativo, los usuarios y administradores del sistema deben contrarrestar activamente cualquier variabilidad de fabricación. En esta tesis, demostramos que los sistemas paralelos se benefician de tener en cuenta las consecuencias de la variabilidad de la fabricación, tanto en términos de rendimiento como de eficiencia energética. Para evaluar nuestro trabajo, también hemos implementado nuestra propia versión del paquete de aplicaciones de prueba PARSEC, basada en tareas paralelos. Esto permite probar nuestra metodología utilizando técnicas avanzadas de paralelización con cargas de trabajo del mundo real. Presentamos dos enfoques para mitigar la variabilidad de fabricación, mediante la redistribución de la energía a durante la ejecución de las aplicaciones y mediante la programación de trabajos a nivel de todo el sistema. Se puede utilizar un sistema runtime paralelo para tratar con eficacia este nuevo tipo de heterogeneidad de rendimiento, compensando los efectos desiguales de la limitación de potencia. En el contexto de un nodo NUMA compuesto de varios sockets y núcleos, nuestro sistema puede optimizar los niveles de energía y concurrencia asignados a cada socket para maximizar el rendimiento. Aplicado de manera transparente dentro del sistema runtime paralelo, no requiere ninguna interacción del programador como cambiar el código fuente de la aplicación o reconfigurar manualmente el sistema paralelo. Comparamos nuestro novedoso análisis de runtime con los resultados óptimos, obtenidos de una análisis manual exhaustiva, y demostramos que puede lograr el mismo rendimiento a una fracción del costo. El siguiente enfoque presentado en esta tesis, muestra que es posible predecir el impacto de la variabilidad de fabricación en aplicaciones específicas mediante el uso de modelos de predicción de potencia conscientes de la variabilidad. Basados ​​en estos modelos de predicción de energía, proponemos dos políticas de programación de trabajos que consideran los efectos de la variabilidad de fabricación para cada aplicación y que aseguran que el consumo se mantiene bajo un presupuesto de energía de todo el sistema. Evaluamos nuestras políticas con diferentes presupuestos de energía y escenarios de tráfico, que consisten en aplicaciones paralelas que corren en uno o varios nodos.Postprint (published version
    corecore