63,187 research outputs found

    Design and performance evaluation of turbo FDE receivers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresIn recent years, block transmission techniques were proposed and developed for broadband wireless communication systems, which have to deal with strongly frequency-selective fading channels. Techniques like Orthogonal Frequency-Division Multiplexing (OFDM)and Single Carrier with Frequency Domain Equalization (SC-FDE) are able to provide high bit rates despite the channel adversities. In this thesis we concentrate on the study of single carrier block transmission techniques considering receiver structures suitable to scenarios with strongly time-dispersive channels. CP-assisted (Cycle Pre x) block transmission techniques are employed to cope with frequency selective channels, allowing cost-e ective implementations through FFT-based (Fast Fourier Transform) signal processing. It is investigated the impact of the number of multipath components as well as the diversity order on the asymptotic performance of SC-FDE schemes. We also propose a receiver structure able to perform a joint detection and channel estimation method, in which it is possible to combine the channel estimates, based on training sequences, with decision-directed channel estimates. A study about the impact of the correlation factor estimation in the performance of Iterative Block-Decision Feedback Equalizer (IB-DFE) receivers is also presented

    Joint frequency domain equalisation and phase noise estimation for single-carrier modulations in doubly-selective channels

    Get PDF
    In this study the authors propose a novel joint detection and phase noise estimation scheme suited for severely time-dispersive channels. The authors consider single-carrier modulations combined with frequency domain equalisation schemes where the wireless transmission is impaired with phase noise. An iterative frequency-domain equaliser is assumed on the receiver side and the phase noise is estimated and compensated for after the equalisation step and within each iteration of the equaliser. In fact, by exploiting the Gaussianity of the equaliser output the authors are able to track the phase noise using stochastic recursive filtering techniques. These techniques share the same dynamic state-space (DSS) model. The observation equation corresponds to the measurement of the phase noise of a digitally-modulated signal affected by additive white Gaussian noise, and the dynamics equation corresponds to the Wiener–Lévy model for the phase noise. Supported on this DSS model the authors aim at estimating the unknown phase noise value given all observations up to the current time instant. In a Bayesian context this represents estimating recursively in time the filtering and the predictive distributions. From these distributions a minimum mean-squared error estimate of the phase noise is determined

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • …
    corecore