164 research outputs found

    Hybrid Delay-Based Congestion Control for Multipath TCP

    Full text link
    [EN] Current algorithms for MPTCP (as LIA, OLIA, BALIA, or wVegas) present loss-based congestion control on the exception of wVegas. Delay-based congestion control allows a preventive action against congestion, capable to avoid loss up to some extent, unlike loss-based congestion control. Additionally delay-based congestion control induces lower delay and presents higher fairness, but poor performance interoperating with loss-based flows, as get a poor share of the available bandwidth. We propose DAIMD, a hybrid congestion control for Multipath TCP, based on the delay-based AIMD scheme, which benefits from better, preventive detection of congestion, a more responsive use of queues and consequently low induced delay, as well as the capability to coexist in fair conditions with loss-based flows in shared links. Our system presents its own analysis criteria for detecting incipient congestion that differs from other delay-based schemes on which it is based, such as CDG, delay-based AIMD and Vegas.This research has received funding from the European Union's Horizon 2020 research and innovation programme as part of the 'Interoperability of Heterogeneous IoT Platforms' (INTER-IoT) project under Grant Agreement nº730; 687283.González-Usach, R.; Pradilla-Cerón, JV.; Esteve Domingo, M.; Palau Salvador, CE. (2016). Hybrid Delay-Based Congestion Control for Multipath TCP. 1-6. https://doi.org/10.1109/MELCON.2016.7495389S1

    OmTCP: increasing performance in server farms.

    Get PDF
    Proceedings of: 2010 IEEE International Conference on Communications (ICC 2010), 23-27 May 2010, Cape Town, South AfricaNormal TCP/IP operation is for the routing system to select a best path that remains stable for some time, and for TCP to adjust to the properties of this path to optimize throughput. By executing TCP’s congestion control algorithms on multiple paths at the same time, a multipath TCP can shift its traffic to a less congested path, thus maximizing both the throughput for the multipath TCP user and leaving more capacity available for other traffic on more congested paths. And when a path fails, this can be detected and worked around by multipath TCP much more quickly than by waiting for the routing system to repair the failure. This paper proposes a one-ended multipath TCP that is implemented on the sending host only, without requiring modifications on the receiving host, for the purposes of maximizing performance in transmissions from multiply connected large servers towards singly connected end-users and recovering from failures more quickly.This research was supported by Trilogy (http://www.trilogy-project.org), a research project (ICT-216372) partially funded by the European Community under its Seventh Framework Programme. European Community's Seventh Framework ProgramPublicad

    Congestion control protocols in wireless sensor networks: A survey

    Get PDF
    The performance of wireless sensor networks (WSN) is affected by the lossy communication medium, application diversity, dense deployment, limited processing power and storage capacity, frequent topology change. All these limitations provide significant and unique design challenges to data transport control in wireless sensor networks. An effective transport protocol should consider reliable message delivery, energy-efficiency, quality of service and congestion control. The latter is vital for achieving a high throughput and a long network lifetime. Despite the huge number of protocols proposed in the literature, congestion control in WSN remains challenging. A review and taxonomy of the state-of-the-art protocols from the literature up to 2013 is provided in this paper. First, depending on the control policy, the protocols are divided into resource control vs. traffic control. Traffic control protocols are either reactive or preventive (avoiding). Reactive solutions are classified following the reaction scale, while preventive solutions are split up into buffer limitation vs. interference control. Resource control protocols are classified according to the type of resource to be tuned. © 2014 IEEE

    Study on the Performance of TCP over 10Gbps High Speed Networks

    Get PDF
    Internet traffic is expected to grow phenomenally over the next five to ten years. To cope with such large traffic volumes, high-speed networks are expected to scale to capacities of terabits-per-second and beyond. Increasing the role of optics for packet forwarding and transmission inside the high-speed networks seems to be the most promising way to accomplish this capacity scaling. Unfortunately, unlike electronic memory, it remains a formidable challenge to build even a few dozen packets of integrated all-optical buffers. On the other hand, many high-speed networks depend on the TCP/IP protocol for reliability which is typically implemented in software and is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay product in switches/routers to maintain nearly 100\% link utilization. Otherwise, the performance will be much downgraded. But such large buffer will challenge hardware design and power consumption, and will generate queuing delay and jitter which again cause problems. Therefore, improve TCP performance over tiny buffered high-speed networks is a top priority. This dissertation studies the TCP performance in 10Gbps high-speed networks. First, a 10Gbps reconfigurable optical networking testbed is developed as a research environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and analyzing TCP performance. New expressions for evaluating TCP loss synchronization are presented by carefully examining the congestion events of TCP. Based on observation, two basic reasons that cause performance problems are studied. We find that minimize TCP loss synchronization and reduce flow burstiness impact are critical keys to improve TCP performance in tiny buffered networks. Finally, we present a new TCP protocol called Multi-Channel TCP and a new congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementation takes advantage of a potential parallelism from the Multi-Path TCP in Linux. Over an emulated 10Gbps network ruled by routers with only a few dozen packets of buffers, our experimental results confirm that bottleneck link utilization can be much better improved by DMCTCP than by many other TCP variants. Our study is a new step towards the deployment of optical packet switching/routing networks

    Performance Enhancement of Multipath TCP for Wireless Communications with Multiple Radio Interfaces

    Get PDF
    ArticleMultipath TCP (MPTCP) allows a TCP connection to operate across multiple paths simultaneously and becomes highly attractive to support the emerging mobile devices with various radio interfaces and to improve resource utilization as well as connection robustness. The existing multipath congestion control algorithms, however, are mainly loss-based and prefer the paths with lower drop rates, leading to severe performance degradation in wireless communication systems where random packet losses occur frequently. To address this challenge, this paper proposes a new mVeno algorithm, which makes full use of the congestion information of all the subflows belonging to a TCP connection in order to adaptively adjust the transmission rate of each subflow. Specifically, mVeno modifies the additive increase phase of Veno so as to effectively couple all subflows by dynamically varying the congestion window increment based on the receiving ACKs. The weighted parameter of each subflow for tuning the congestio

    Early Experiences in Traffic Engineering Exploiting Path Diversity: A Practical Approach

    Get PDF
    Recent literature has proved that stable dynamic routing algorithms have solid theoretical foundation that makes them suitable to be implemented in a real protocol, and used in practice in many different operational network contexts. Such algorithms inherit much of the properties of congestion controllers implementing one of the possible combination of AQM/ECN schemes at nodes and flow control at sources. In this paper we propose a linear program formulation of the multi-commodity flow problem with congestion control, under max-min fairness, comprising demands with or without exogenous peak rates. Our evaluations of the gain, using path diversity, in scenarios as intra-domain traffic engineering and wireless mesh networks encourages real implementations, especially in presence of hot spots demands and non uniform traffic matrices. We propose a flow aware perspective of the subject by using a natural multi-path extension to current congestion controllers and show its performance with respect to current proposals. Since flow aware architectures exploiting path diversity are feasible, scalable, robust and nearly optimal in presence of flows with exogenous peak rates, we claim that our solution rethinked in the context of realistic traffic assumptions performs as better as an optimal approach with all the additional benefits of the flow aware paradigm
    • …
    corecore