515 research outputs found

    JVM-hosted languages: They talk the talk, but do they walk the walk?

    Get PDF
    The rapid adoption of non-Java JVM languages is impressive: major international corporations are staking critical parts of their software infrastructure on components built from languages such as Scala and Clojure. However with the possible exception of Scala, there has been little academic consideration and characterization of these languages to date. In this paper, we examine four nonJava JVM languages and use exploratory data analysis techniques to investigate differences in their dynamic behavior compared to Java. We analyse a variety of programs and levels of behavior to draw distinctions between the different programming languages. We briefly discuss the implications of our findings for improving the performance of JIT compilation and garbage collection on the JVM platform

    Relating Static and Dynamic Measurements for the Java Virtual Machine Instruction Set

    Get PDF
    It has previously been noted that, for conventional machine code, there is a strong relationship between static and dynamic code measurements. One of the goals of this paper is to examine whether this same relationship is true of Java programs at the bytecode level. To this end, the hypothesis of a linear correlation between static and dynamic frequencies was investigated using Pearson’s correlation coefficient. Programs from the Java Grande and SPEC benchmarks suites were used in the analysis

    Towards an embedded real-time Java virtual machine

    Get PDF
    Most computers today are embedded, i.e. they are built into some products or system that is not perceived as a computer. It is highly desirable to use modern safe object-oriented software techniques for a rapid development of reliable systems. However, languages and run-time platforms for embedded systems have not kept up with the front line of language development. Reasons include complex and, in some cases, contradictory requirements on timing, concurrency, predictability, safety, and flexibility. A carefully tailored Java virtual machine (called IVM) is proposed as an approach to overcome these difficulties. In particular, real-time garbage collection has been considered an essential part. The set of bytecodes has been revised to require less memory and to facilitate predictable execution. To further reduce the memory footprint, the class loader can be located outside the embedded processor. Since the accomplished concurrency is crucial for the function of many embedded applications, the scheduling can be defined on the application level in Java. Finally considering future needs for flexibility and on-line configuration of embedded system, the IVM has a unique structure with which, for instance, methods being objects that can be replaced and GCed. The approach has been experimentally verified by a full prototype implementation of such a virtual machine. By making the prototype available for development of real products, this in turn has confronted the solutions with real industrial demands. It was found that the IVM can be easily integrated in typical systems today and the mentioned requirements are fulfilled. Based on experiences from more than 10 projects utilising the novel Java-oriented techniques, there are reasons to believe that the proposed approach is very promising for future flexible embedded systems

    JIST: just-in-time scheduling translation for parallel processors

    Get PDF
    The application fields of bytecode virtual machines and VLIW processors overlap in the area of embedded and mobile systems, where the two technologies offer different benefits, namely high code portability, low power consumption and reduced hardware cost. Dynamic compilation makes it possible to bridge the gap between the two technologies, but special attention must be paid to software instruction scheduling, a must for the VLIW architectures. We have implemented JIST, a Virtual Machine and JIT compiler for Java Bytecode targeted to a VLIW processor. We show the impact of various optimizations on the performance of code compiled with JIST through the experimental study on a set of benchmark programs. We report significant speedups, and increments in the number of instructions issued per cycle up to 50% with respect to the non-scheduling version of the JITcompiler. Further optimizations are discussed
    corecore