57,971 research outputs found

    Neutrality: A Necessity for Self-Adaptation

    Full text link
    Self-adaptation is used in all main paradigms of evolutionary computation to increase efficiency. We claim that the basis of self-adaptation is the use of neutrality. In the absence of external control neutrality allows a variation of the search distribution without the risk of fitness loss.Comment: 6 pages, 3 figures, LaTe

    Credit Assignment in Adaptive Evolutionary Algorithms

    Get PDF
    In this paper, a new method for assigning credit to search\ud operators is presented. Starting with the principle of optimizing\ud search bias, search operators are selected based on an ability to\ud create solutions that are historically linked to future generations.\ud Using a novel framework for defining performance\ud measurements, distributing credit for performance, and the\ud statistical interpretation of this credit, a new adaptive method is\ud developed and shown to outperform a variety of adaptive and\ud non-adaptive competitors

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Evolutionary Dynamics in a Simple Model of Self-Assembly

    Full text link
    We investigate the evolutionary dynamics of an idealised model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model's rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding, complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterised, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers

    Adaptive intelligence applied to numerical optimisation

    Get PDF
    The article presents modification strategies theoretical comparison and experimental results achieved by adaptive heuristics applied to numerical optimisation of several non-constraint test functions. The aims of the study are to identify and compare how adaptive search heuristics behave within heterogeneous search space without retuning of the search parameters. The achieved results are summarised and analysed, which could be used for comparison to other methods and further investigation

    Adaptive intelligence: essential aspects

    Get PDF
    The article discusses essential aspects of Adaptive Intelligence. Experimental results on optimisation of global test functions by Free Search, Differential Evolution, and Particle Swarm Optimisation clarify how these methods can adapt to multi-modal landscape and space dominated by sub-optimal regions, without supervisors’ control. The achieved results are compared and analysed

    Self-adaptation of mutation distribution in evolutionary algorithms

    Get PDF
    This paper is posted here with permission from IEEE - Copyright @ 2007 IEEEThis paper proposes a self-adaptation method to control not only the mutation strength parameter, but also the mutation distribution for evolutionary algorithms. For this purpose, the isotropic g-Gaussian distribution is employed in the mutation operator. The g-Gaussian distribution allows to control the shape of the distribution by setting a real parameter g and can reproduce either finite second moment distributions or infinite second moment distributions. In the proposed method, the real parameter q of the g-Gaussian distribution is encoded in the chromosome of an individual and is allowed to evolve. An evolutionary programming algorithm with the proposed idea is presented. Experiments were carried out to study the performance of the proposed algorithm

    Recombination and Self-Adaptation in Multi-objective Genetic Algorithms

    Get PDF
    This paper investigates the influence of recombination and self-adaptation in real-encoded Multi-Objective Genetic Algorithms (MOGAs). NSGA-II and SPEA2 are used as example to characterize the efficiency of MOGAs in relation to various recombination operators. The blend crossover, the simulated binary crossover and the breeder genetic crossover are compared for both MOGAs on multi-objective problems of the literature. Finally, a self-adaptive recombination scheme is proposed to improve the robustness of MOGAs

    A comparative study of adaptive mutation operators for metaheuristics

    Get PDF
    Genetic algorithms (GAs) are a class of stochastic optimization methods inspired by the principles of natural evolution. Adaptation of strategy parameters and genetic operators has become an important and promising research area in GAs. Many researchers are applying adaptive techniques to guide the search of GAs toward optimum solutions. Mutation is a key component of GAs. It is a variation operator to create diversity for GAs. This paper investigates several adaptive mutation operators, including population level adaptive mutation operators and gene level adaptive mutation operators, for GAs and compares their performance based on a set of uni-modal and multi-modal benchmark problems. The experimental results show that the gene level adaptive mutation operators are usually more efficient than the population level adaptive mutation operators for GAs
    corecore