329 research outputs found

    Telephony Denial of Service Defense at Data Plane (TDoSD@DP)

    Get PDF
    The Session Initiation Protocol (SIP) is an application-layer control protocol used to establish and terminate calls that are deployed globally. A flood of SIP INVITE packets sent by an attacker causes a Telephony Denial of Service (TDoS) incident, during which legitimate users are unable to use telephony services. Legacy TDoS defense is typically implemented as network appliances and not sufficiently deployed to enable early detection. To make TDoS defense more widely deployed and yet affordable, this paper presents TDoSD@DP where TDoS detection and mitigation is programmed at the data plane so that it can be enabled on every switch port and therefore serves as distributed SIP sensors. With this approach, the damage is isolated at a particular switch and bandwidth saved by not sending attack packets further upstream. Experiments have been performed to track the SIP state machine and to limit the number of active SIP session per port. The results show that TDoSD@DP was able to detect and mitigate ongoing INVITE flood attack, protecting the SIP server, and limiting the damage to a local switch. Bringing the TDoS defense function to the data plane provides a novel data plane application that operates at the SIP protocol and a novel approach for TDoS defense implementation.Final Accepted Versio

    A survey of defense mechanisms against distributed denial of service (DDOS) flooding attacks

    Get PDF
    Distributed Denial of Service (DDoS) flooding attacks are one of the biggest concerns for security professionals. DDoS flooding attacks are typically explicit attempts to disrupt legitimate users' access to services. Attackers usually gain access to a large number of computers by exploiting their vulnerabilities to set up attack armies (i.e., Botnets). Once an attack army has been set up, an attacker can invoke a coordinated, large-scale attack against one or more targets. Developing a comprehensive defense mechanism against identified and anticipated DDoS flooding attacks is a desired goal of the intrusion detection and prevention research community. However, the development of such a mechanism requires a comprehensive understanding of the problem and the techniques that have been used thus far in preventing, detecting, and responding to various DDoS flooding attacks. In this paper, we explore the scope of the DDoS flooding attack problem and attempts to combat it. We categorize the DDoS flooding attacks and classify existing countermeasures based on where and when they prevent, detect, and respond to the DDoS flooding attacks. Moreover, we highlight the need for a comprehensive distributed and collaborative defense approach. Our primary intention for this work is to stimulate the research community into developing creative, effective, efficient, and comprehensive prevention, detection, and response mechanisms that address the DDoS flooding problem before, during and after an actual attack. © 1998-2012 IEEE

    Resilience to DDoS attacks

    Get PDF
    Tese de mestrado, Segurança Informática, 2022, Universidade de Lisboa, Faculdade de CiênciasDistributed Denial-of-Service (DDoS) is one of the most common cyberattack used by malicious actors. It has been evolving over the years, using more complex techniques to increase its attack power and surpass the current defense mechanisms. Due to the existent number of different DDoS attacks and their constant evolution, companies need to be constantly aware of developments in DDoS solutions Additionally, the existence of multiple solutions, also makes it hard for companies to decide which solution best suits the company needs and must be implemented. In order to help these companies, our work focuses in analyzing the existing DDoS solutions, for companies to implement solutions that can lead to the prevention, detection, mitigation, and tolerance of DDoS attacks, with the objective of improving the robustness and resilience of the companies against DDoS attacks. In our work, it is presented and described different DDoS solutions, some need to be purchased and other are open-source or freeware, however these last solutions require more technical expertise by cybersecurity agents. To understand how cybersecurity agents protect their companies against DDoS attacks, nowadays, it was built a questionnaire and sent to multiple cybersecurity agents from different countries and industries. As a result of the study performed about the different DDoS solutions and the information gathered from the questionnaire, it was possible to create a DDoS framework to guide companies in the decisionmaking process of which DDoS solutions best suits their resources and needs, in order to ensure that companies can develop their robustness and resilience to fight DDoS attacks. The proposed framework it is divided in three phases, in which the first and second phase is to understand the company context and the asset that need to be protected. The last phase is where we choose the DDoS solution based on the information gathered in the previous phases. We analyzed and presented for each DDoS solutions, which DDoS attack types they can prevent, detect and/or mitigate

    Mitigating Denial-of-Service Attacks on VoIP Environment

    Get PDF
    IP telephony refers to the use of Internet protocols to provide voice, video, and data in one integrated service over LANs, BNs, MANs, not WANs. VoIP provides three key benefits compared to traditional voice telephone services. First, it minimizes the need fro extra wiring in new buildings. Second, it provides easy movement of telephones and the ability of phone numbers to move with the individual. Finally, VoIP is generally cheaper to operate because it requires less network capacity to transmit the same voice telephone call over an increasingly digital telephone network (FitzGerald & Dennis, 2007 p. 519). Unfortunately, benefits of new electronic communications come with proportionate risks. Companies experience losses resulting from attacks on data networks. There are direct losses like economic theft, theft of trade secrets and digital data, as well as indirect losses that include loss of sales, loss of competitive advantage etc. The companies need to develop their security policies to protect their businesses. But the practice of information security has become more complex than ever. The research paper will be about the major DoS threats the company’s VoIP environment can experience as well as best countermeasures that can be used to prevent them and make the VoIP environment and, therefore, company’s networking environment more secure

    Botnets and Distributed Denial of Service Attacks

    Get PDF
    With their ever increasing malicious capabilities and potential to infect a vast majority of computers on the Internet, botnets are emerging as the single biggest threat to Internet security. The aim of this project is to perform a detailed analysis of botnets and the vulnerabilities exploited by them to spread themselves and perform various malicious activities such as DDoS attacks. DDoS attacks are without doubt the most potent form of attacks carried out by botnets. In order to better understand this growing phenomenon and develop effective counter measures, it is necessary to be able to simulate DDoS attacks in a controlled environment. Simulating a DDoS attack with control over various simulation and attack parameters will give us insights into how attacks achieve stealth and avoid detection. A detailed analysis of existing DDoS defense strategies and proposals combined with the insights derived from simulation should enable us to come up with innovative and feasible solutions to prevent and mitigate DDoS attacks carried out using Botnet

    Trends on Computer Security: Cryptography, User Authentication, Denial of Service and Intrusion Detection

    Get PDF
    The new generation of security threats has beenpromoted by digital currencies and real-time applications, whereall users develop new ways to communicate on the Internet.Security has evolved in the need of privacy and anonymity forall users and his portable devices. New technologies in everyfield prove that users need security features integrated into theircommunication applications, parallel systems for mobile devices,internet, and identity management. This review presents the keyconcepts of the main areas in computer security and how it hasevolved in the last years. This work focuses on cryptography,user authentication, denial of service attacks, intrusion detectionand firewalls
    corecore