35,864 research outputs found

    A structured framework for representing time in a generative composition system

    Get PDF
    The representation of music structures is, from Musicology to Artificial Intelligence, a widely known research focus. It entails several generic Knowledge Representation problems like structured knowledge representation, time representation and causality. In this paper, we focus the problem of representing and reasoning about time in the framework of a structured music representation approach, intended to support the development of a Case-Based generative composition system. The basic idea of this system is to use Music Analysis as foundation for a generative process of composition, providing a structured and constrained way of composing novel pieces, although keeping the essential traits of the composer’s style. We propose a solution that combines a tree-like representation with a pseudo-dating scheme to provide an efficient and expressive means to deal with the problem

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar

    A Generative Model of Group Conversation

    Full text link
    Conversations with non-player characters (NPCs) in games are typically confined to dialogue between a human player and a virtual agent, where the conversation is initiated and controlled by the player. To create richer, more believable environments for players, we need conversational behavior to reflect initiative on the part of the NPCs, including conversations that include multiple NPCs who interact with one another as well as the player. We describe a generative computational model of group conversation between agents, an abstract simulation of discussion in a small group setting. We define conversational interactions in terms of rules for turn taking and interruption, as well as belief change, sentiment change, and emotional response, all of which are dependent on agent personality, context, and relationships. We evaluate our model using a parameterized expressive range analysis, observing correlations between simulation parameters and features of the resulting conversations. This analysis confirms, for example, that character personalities will predict how often they speak, and that heterogeneous groups of characters will generate more belief change.Comment: Accepted submission for the Workshop on Non-Player Characters and Social Believability in Games at FDG 201

    MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment

    Full text link
    Generating music has a few notable differences from generating images and videos. First, music is an art of time, necessitating a temporal model. Second, music is usually composed of multiple instruments/tracks with their own temporal dynamics, but collectively they unfold over time interdependently. Lastly, musical notes are often grouped into chords, arpeggios or melodies in polyphonic music, and thereby introducing a chronological ordering of notes is not naturally suitable. In this paper, we propose three models for symbolic multi-track music generation under the framework of generative adversarial networks (GANs). The three models, which differ in the underlying assumptions and accordingly the network architectures, are referred to as the jamming model, the composer model and the hybrid model. We trained the proposed models on a dataset of over one hundred thousand bars of rock music and applied them to generate piano-rolls of five tracks: bass, drums, guitar, piano and strings. A few intra-track and inter-track objective metrics are also proposed to evaluate the generative results, in addition to a subjective user study. We show that our models can generate coherent music of four bars right from scratch (i.e. without human inputs). We also extend our models to human-AI cooperative music generation: given a specific track composed by human, we can generate four additional tracks to accompany it. All code, the dataset and the rendered audio samples are available at https://salu133445.github.io/musegan/ .Comment: to appear at AAAI 201
    • …
    corecore