3,496 research outputs found

    Rheology and structure of foams

    Get PDF

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Human Computation and Convergence

    Full text link
    Humans are the most effective integrators and producers of information, directly and through the use of information-processing inventions. As these inventions become increasingly sophisticated, the substantive role of humans in processing information will tend toward capabilities that derive from our most complex cognitive processes, e.g., abstraction, creativity, and applied world knowledge. Through the advancement of human computation - methods that leverage the respective strengths of humans and machines in distributed information-processing systems - formerly discrete processes will combine synergistically into increasingly integrated and complex information processing systems. These new, collective systems will exhibit an unprecedented degree of predictive accuracy in modeling physical and techno-social processes, and may ultimately coalesce into a single unified predictive organism, with the capacity to address societies most wicked problems and achieve planetary homeostasis.Comment: Pre-publication draft of chapter. 24 pages, 3 figures; added references to page 1 and 3, and corrected typ

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    SciTech News Volume 70, No. 2 (2016)

    Get PDF
    Table of Contents: Columns and Reports From the Editor 3 Division News Science-Technology Division 4 New Members 6 Chemistry Division 7 New Members11 Engineering Division 12 Aerospace Section of the Engineering Division 17 Reviews Sci-Tech Book News Reviews 1

    Measuring named data networks

    Get PDF
    2020 Spring.Includes bibliographical references.Named Data Networking (NDN) is a promising information-centric networking (ICN) Internet architecture that addresses the content directly rather than addressing servers. NDN provides new features, such as content-centric security, stateful forwarding, and in-network caches, to better satisfy the needs of today's applications. After many years of technological research and experimentation, the community has started to explore the deployment path for NDN. One NDN deployment challenge is measurement. Unlike IP, which has a suite of measurement approaches and tools, NDN only has a few achievements. NDN routing and forwarding are based on name prefixes that do not refer to individual endpoints. While rich NDN functionalities facilitate data distribution, they also break the traditional end-to-end probing based measurement methods. In this dissertation, we present our work to investigate NDN measurements and fill some research gaps in the field. Our thesis of this dissertation states that we can capture a substantial amount of useful and actionable measurements of NDN networks from end hosts. We start by comparing IP and NDN to propose a conceptual framework for NDN measurements. We claim that NDN can be seen as a superset of IP. NDN supports similar functionalities provided by IP, but it has unique features to facilitate data retrieval. The framework helps identify that NDN lacks measurements in various aspects. This dissertation focuses on investigating the active measurements from end hosts. We present our studies in two directions to support the thesis statement. We first present the study to leverage the similarities to replicate IP approaches in NDN networks. We show the first work to measure the NDN-DPDK forwarder, a high-speed NDN forwarder designed and implemented by the National Institute of Standards and Technology (NIST), in a real testbed. The results demonstrate that Data payload sizes dominate the forwarding performance, and efficiently using every fragment to improve the goodput. We then present the first work to replicate packet dispersion techniques in NDN networks. Based on the findings in the NDN-DPDK forwarder benchmark, we devise the techniques to measure interarrivals for Data packets. The results show that the techniques successfully estimate the capacity on end hosts when 1Gbps network cards are used. Our measurements also indicate the NDN-DPDK forwarder introduces variance in Data packet interarrivals. We identify the potential bottlenecks and the possible causes of the variance. We then address the NDN specific measurements, measuring the caching state in NDN networks from end hosts. We propose a novel method to extract fingerprints for various caching decision mechanisms. Our simulation results demonstrate that the method can detect caching decisions in a few rounds. We also show that the method is not sensitive to cross-traffic and can be deployed on real topologies for caching policy detection

    Action-Oriented Programming Model: Collective Executions and Interactions in the Fog

    Get PDF
    Today’s dominant design for the Internet of Things (IoT) is a Cloud-based system, where devices transfer their data to a back-end and in return receive instructions on how to act. This view is challenged when delays caused by communication with the back-end become an obstacle for the IoT applications with e.g., stringent timing constraints. In contrast, Fog Computing approaches, where devices communicate and orchestrate their operations collectively and closer to the origin of data, lack adequate tools for programming secure interactions between humans and their proximate devices at the network edge. This paper fills the gap by applying Action-Oriented Programming (AcOP) model for this task. While originally the AcOP model was proposed for Cloud-based infrastructures, presently it is re-designed around the notion of coalescence and disintegration, which enable the devices to collectively and autonomously execute their operations in the Fog by serving humans in a peer-to-peer fashion. The Cloud’s role has been minimized—it is being leveraged as a development and deployment platform.Peer reviewe

    Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Get PDF
    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    • 

    corecore