1,065 research outputs found

    Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics.

    Get PDF
    The annotation of small molecules remains a major challenge in untargeted mass spectrometry-based metabolomics. We here critically discuss structured elucidation approaches and software that are designed to help during the annotation of unknown compounds. Only by elucidating unknown metabolites first is it possible to biologically interpret complex systems, to map compounds to pathways and to create reliable predictive metabolic models for translational and clinical research. These strategies include the construction and quality of tandem mass spectral databases such as the coalition of MassBank repositories and investigations of MS/MS matching confidence. We present in silico fragmentation tools such as MS-FINDER, CFM-ID, MetFrag, ChemDistiller and CSI:FingerID that can annotate compounds from existing structure databases and that have been used in the CASMI (critical assessment of small molecule identification) contests. Furthermore, the use of retention time models from liquid chromatography and the utility of collision cross-section modelling from ion mobility experiments are covered. Workflows and published examples of successfully annotated unknown compounds are included

    Design of a Structure Search Engine for Chemical Compound Database

    Get PDF
    The search for structural fragments (substructures) of compounds is very important in medicinal chemistry, QSAR, spectroscopy, and many other fields. In the last decade, with the development of hardware and evolution of database technologies, more and more chemical compound database applications have been developed along with interfaces of searching for targets based on user input. Due to the algorithmic complexity of structure comparison, essentially a graph isomorphism problem, the current applications mainly work by the approximation of the comparison problem based on certain chemical perceptions and their search interfaces are often e-mail based. The procedure of approximation usually invokes subjective assumption. Therefore, the accuracy of the search is undermined, which may not be acceptable for researchers because in a time-consuming drug design, accuracy is always the first priority. In this dissertation, a design of a search engine for chemical compound database is presented.The design focuses on providing a solution to develop an accurate and fast search engine without sacrificing performance. The solution is comprehensive in a way that a series of related problems were addressed throughout the dissertation with proposed methods. Based on the design, a flexible computing model working for compound search engine can be established and the model can be easily applied to other applications as well. To verify the solution in a practical manner, an implementation based on the presented solution was developed. The implementation clarifies the coupling between theoretic design and technique development. In addition, a workable implementation can be deployed to test the efficiency and effectiveness of the design under variant of experimental data

    BIAdb: A curated database of benzylisoquinoline alkaloids

    Get PDF
    Background: Benzylisoquinoline is the structural backbone of many alkaloids with a wide variety of structures including papaverine, noscapine, codeine, morphine, apomorphine, berberine, protopine and tubocurarine. Many benzylisoquinoline alkaloids have been reported to show therapeutic properties and to act as novel medicines. Thus it is important to collect and compile benzylisoquinoline alkaloids in order to explore their usage in medicine. Description: We extract information about benzylisoquinoline alkaloids from various sources like PubChem, KEGG, KNApSAcK and manual curation from literature. This information was processed and compiled in order to create a comprehensive database of benzylisoquinoline alkaloids, called BIAdb. The current version of BIAdb contains information about 846 unique benzylisoquinoline alkaloids, with multiple entries in term of source, function leads to total number of 2504 records. One of the major features of this database is that it provides data about 627 different plant species as a source of benzylisoquinoline and 114 different types of function performed by these compounds. A large number of online tools have been integrated, which facilitate user in exploring full potential of BIAdb. In order to provide additional information, we give external links to other resources/databases. One of the important features of this database is that it is tightly integrated with Drugpedia, which allows managing data in fixed/flexible format. Conclusions: A database of benzylisoquinoline compounds has been created, which provides comprehensive information about benzylisoquinoline alkaloids. This database will be very useful for those who are working in the field of drug discovery based on natural products. This database will also serve researchers working in the field of synthetic biology, as developing medicinally important alkaloids using synthetic process are one of important challenges. This database is available from http://crdd.osdd.net/raghava/biadb/

    The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching

    Get PDF
    open access articleBackground: The Chemistry Development Kit (CDK) is a widely used open source cheminformatics toolkit, providing data structures to represent chemical concepts along with methods to manipulate such structures and perform computations on them. The library implements a wide variety of cheminformatics algorithms ranging from chemical structure canonicalization to molecular descriptor calculations and pharmacophore perception. It is used in drug discovery, metabolomics, and toxicology. Over the last 10 years, the code base has grown significantly, however, resulting in many complex interdependencies among components and poor performance of many algorithms. Results: We report improvements to the CDK v2.0 since the v1.2 release series, specifically addressing the increased functional complexity and poor performance. We first summarize the addition of new functionality, such atom typing and molecular formula handling, and improvement to existing functionality that has led to significantly better performance for substructure searching, molecular fingerprints, and rendering of molecules. Second, we outline how the CDK has evolved with respect to quality control and the approaches we have adopted to ensure stability, including a code review mechanism. Conclusions: This paper highlights our continued efforts to provide a community driven, open source cheminformatics library, and shows that such collaborative projects can thrive over extended periods of time, resulting in a high-quality and performant library. By taking advantage of community support and contributions, we show that an open source cheminformatics project can act as a peer reviewed publishing platform for scientific computing software

    The use of MoStBioDat for rapid screening of molecular diversity

    Get PDF
    MoStBioDat is a uniform data storage and extraction system with an extensive array of tools for structural similarity measures and pattern matching which is essential to facilitate the drug discovery process. Structure-based database screening has recently become a common and efficient technique in early stages of the drug development, shifting the emphasis from rational drug design into the probability domain of more or less random discovery. The virtual ligand screening (VLS), an approach based on high-throughput flexible docking, samples a virtually infinite molecular diversity of chemical libraries increasing the concentration of molecules with high binding affinity. The rapid process of subsequent examination of a large number of molecules in order to optimize the molecular diversity is an attractive alternative to the traditional methods of lead discovery. This paper presents the application of the MoStBioDat package not only as a data management platform but mainly in substructure searching. In particular, examples of the applications of MoStBioDat are discussed and analyze

    Bayesian methods for small molecule identification

    Get PDF
    Confident identification of small molecules remains a major challenge in untargeted metabolomics, natural product research and related fields. Liquid chromatography-tandem mass spectrometry is a predominant technique for the high-throughput analysis of small molecules and can detect thousands of different compounds in a biological sample. The automated interpretation of the resulting tandem mass spectra is highly non-trivial and many studies are limited to re-discovering known compounds by searching mass spectra in spectral reference libraries. But these libraries are vastly incomplete and a large portion of measured compounds remains unidentified. This constitutes a major bottleneck in the comprehensive, high-throughput analysis of metabolomics data. In this thesis, we present two computational methods that address different steps in the identification process of small molecules from tandem mass spectra. ZODIAC is a novel method for de novo that is, database-independent molecular formula annotation in complete datasets. It exploits similarities of compounds co-occurring in a sample to find the most likely molecular formula for each individual compound. ZODIAC improves on the currently best-performing method SIRIUS; on one dataset by 16.5 fold. We show that de novo molecular formula annotation is not just a theoretical advantage: We discover multiple novel molecular formulas absent from PubChem, one of the biggest structure databases. Furthermore, we introduce a novel scoring for CSI:FingerID, a state-of-the-art method for searching tandem mass spectra in a structure database. This scoring models dependencies between different molecular properties in a predicted molecular fingerprint via Bayesian networks. This problem has the unusual property, that the marginal probabilities differ for each predicted query fingerprint. Thus, we need to apply Bayesian networks in a novel, non-standard fashion. Modeling dependencies improves on the currently best scoring

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    A Multiobjective Evolutionary Conceptual Clustering Methodology for Gene Annotation Within Structural Databases: A Case of Study on the Gene Ontology Database

    Get PDF
    Current tools and techniques devoted to examine the content of large databases are often hampered by their inability to support searches based on criteria that are meaningful to their users. These shortcomings are particularly evident in data banks storing representations of structural data such as biological networks. Conceptual clustering techniques have demonstrated to be appropriate for uncovering relationships between features that characterize objects in structural data. However, typical con ceptual clustering approaches normally recover the most obvious relations, but fail to discover the lessfrequent but more informative underlying data associations. The combination of evolutionary algorithms with multiobjective and multimodal optimization techniques constitutes a suitable tool for solving this problem. We propose a novel conceptual clustering methodology termed evolutionary multiobjective conceptual clustering (EMO-CC), re lying on the NSGA-II multiobjective (MO) genetic algorithm. We apply this methodology to identify conceptual models in struc tural databases generated from gene ontologies. These models can explain and predict phenotypes in the immunoinflammatory response problem, similar to those provided by gene expression or other genetic markers. The analysis of these results reveals that our approach uncovers cohesive clusters, even those comprising a small number of observations explained by several features, which allows describing objects and their interactions from different perspectives and at different levels of detail.Ministerio de Ciencia y Tecnología TIC-2003-00877Ministerio de Ciencia y Tecnología BIO2004-0270EMinisterio de Ciencia y Tecnología TIN2006-1287

    ClassyFire: automated chemical classification with a comprehensive, computable taxonomy

    Get PDF
    Additional file 5. Use cases. Text-based search on the ClassyFire web server. (A) Building the query. (B) Sparteine, one of the returned compounds
    corecore