25,522 research outputs found

    Semantic Network Analysis of Ontologies

    Get PDF
    A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures currently receive high attention in the Semantic Web community, there are only very few SNA applications, and virtually none for analyzing the structure of ontologies. We illustrate the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size

    Ontology selection: ontology evaluation on the real Semantic Web

    Get PDF
    The increasing number of ontologies on the Web and the appearance of large scale ontology repositories has brought the topic of ontology selection in the focus of the semantic web research agenda. Our view is that ontology evaluation is core to ontology selection and that, because ontology selection is performed in an open Web environment, it brings new challenges to ontology evaluation. Unfortunately, current research regards ontology selection and evaluation as two separate topics. Our goal in this paper is to explore how these two tasks relate. In particular, we are interested to get a better understanding of the ontology selection task and filter out the challenges that it brings to ontology evaluation. We discuss requirements posed by the open Web environment on ontology selection, we overview existing work on selection and point out future directions. Our major conclusion is that, even if selection methods still need further development, they have already brought novel approaches to ontology evaluatio

    Expressing OWL axioms by English sentences: dubious in theory, feasible in practice

    Get PDF
    With OWL (Web Ontology Language) established as a standard for encoding ontologies on the Semantic Web, interest has begun to focus on the task of verbalising OWL code in controlled English (or other natural language). Current approaches to this task assume that axioms in OWL can be mapped to sentences in English. We examine three potential problems with this approach (concerning logical sophistication, information structure, and size), and show that although these could in theory lead to insuperable difficulties, in practice they seldom arise, because ontology developers use OWL in ways that favour a transparent mapping. This result is evidenced by an analysis of patterns from a corpus of over 600,000 axioms in about 200 ontologies

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance

    Get PDF
    Increasingly, organizations are adopting ontologies to describe their large catalogues of items. These ontologies need to evolve regularly in response to changes in the domain and the emergence of new requirements. An important step of this process is the selection of candidate concepts to include in the new version of the ontology. This operation needs to take into account a variety of factors and in particular reconcile user requirements and application performance. Current ontology evolution methods focus either on ranking concepts according to their relevance or on preserving compatibility with existing applications. However, they do not take in consideration the impact of the ontology evolution process on the performance of computational tasks – e.g., in this work we focus on instance tagging, similarity computation, generation of recommendations, and data clustering. In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a novel approach for selecting from a group of candidates a set of concepts able to produce a new version of a given ontology that i) is consistent with the a set of user requirements (e.g., max number of concepts in the ontology), ii) is parametrised with respect to a number of dimensions (e.g., topological considerations), and iii) effectively supports relevant computational tasks. Our approach also supports users in navigating the space of possible solutions by showing how certain choices, such as limiting the number of concepts or privileging trendy concepts rather than historical ones, would reflect on the application performance. An evaluation of POE on the real-world scenario of the evolving Springer Nature taxonomy for editorial classification yielded excellent results, demonstrating a significant improvement over alternative approaches
    corecore