26 research outputs found

    Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives

    Get PDF
    A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the objective ijECij(fij)\sum_{ij\in E} C_{ij}(f_{ij}) over feasible flows ff, where on every arc ijij of the network, CijC_{ij} is a convex function. We give a strongly polynomial algorithm for the case when all CijC_{ij}'s are convex quadratic functions, settling an open problem raised e.g. by Hochbaum [1994]. We also give strongly polynomial algorithms for computing market equilibria in Fisher markets with linear utilities and with spending constraint utilities, that can be formulated in this framework (see Shmyrev [2009], Devanur et al. [2011]). For the latter class this resolves an open question raised by Vazirani [2010]. The running time is O(m4logm)O(m^4\log m) for quadratic costs, O(n4+n2(m+nlogn)logn)O(n^4+n^2(m+n\log n)\log n) for Fisher's markets with linear utilities and O(mn3+m2(m+nlogn)logm)O(mn^3 +m^2(m+n\log n)\log m) for spending constraint utilities. All these algorithms are presented in a common framework that addresses the general problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general problem even in an approximate sense (see Hochbaum [1994]), we show that assuming the existence of certain black-box oracles, one can give an algorithm using a strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms can be derived by implementing these oracles in the respective settings

    Greedy Oriented Flows

    Get PDF

    An accelerated Newton–Dinkelbach method and its application to two variables per inequality systems

    Get PDF
    We present an accelerated, or ‘look-ahead’ version of the Newton–Dinkelbach method, a wellknown technique for solving fractional and parametric optimization problems. This acceleration halves the Bregman divergence between the current iterate and the optimal solution within every two iterations. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial optimization, we show a convergence bound of O(m log m) iterations; the previous best bound was O(m2 log m) by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn) time for general 2VPI systems, and O(m+n log n) time for the special case of deterministic Markov Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization result by Goemans et al. (2017)

    Combinatorial Optimization

    Get PDF
    This report summarizes the meeting on Combinatorial Optimization where new and promising developments in the field were discussed. Th

    On linear, fractional, and submodular optimization

    Get PDF
    In this thesis, we study four fundamental problems in the theory of optimization. 1. In fractional optimization, we are interested in minimizing a ratio of two functions over some domain. A well-known technique for solving this problem is the Newton– Dinkelbach method. We propose an accelerated version of this classical method and give a new analysis using the Bregman divergence. We show how it leads to improved or simplified results in three application areas. 2. The diameter of a polyhedron is the maximum length of a shortest path between any two vertices. The circuit diameter is a relaxation of this notion, whereby shortest paths are not restricted to edges of the polyhedron. For a polyhedron in standard equality form with constraint matrix A, we prove an upper bound on the circuit diameter that is quadratic in the rank of A and logarithmic in the circuit imbalance measure of A. We also give circuit augmentation algorithms for linear programming with similar iteration complexity. 3. The correlation gap of a set function is the ratio between its multilinear and concave extensions. We present improved lower bounds on the correlation gap of a matroid rank function, parametrized by the rank and girth of the matroid. We also prove that for a weighted matroid rank function, the worst correlation gap is achieved with uniform weights. Such improved lower bounds have direct applications in submodular maximization and mechanism design. 4. The last part of this thesis concerns parity games, a problem intimately related to linear programming. A parity game is an infinite-duration game between two players on a graph. The problem of deciding the winner lies in NP and co-NP, with no known polynomial algorithm to date. Many of the fastest (quasi-polynomial) algorithms have been unified via the concept of a universal tree. We propose a strategy iteration framework which can be applied on any universal tree

    An accelerated Newton-Dinkelbach method and its application to two variables per inequality systems

    Get PDF
    We present an accelerated, or 'look-ahead' version of the Newton-Dinkelbach method, a well-known technique for solving fractional and parametric optimization problems. This acceler

    Advances in Graph-Cut Optimization: Multi-Surface Models, Label Costs, and Hierarchical Costs

    Get PDF
    Computer vision is full of problems that are elegantly expressed in terms of mathematical optimization, or energy minimization. This is particularly true of low-level inference problems such as cleaning up noisy signals, clustering and classifying data, or estimating 3D points from images. Energies let us state each problem as a clear, precise objective function. Minimizing the correct energy would, hypothetically, yield a good solution to the corresponding problem. Unfortunately, even for low-level problems we are confronted by energies that are computationally hard—often NP-hard—to minimize. As a consequence, a rather large portion of computer vision research is dedicated to proposing better energies and better algorithms for energies. This dissertation presents work along the same line, specifically new energies and algorithms based on graph cuts. We present three distinct contributions. First we consider biomedical segmentation where the object of interest comprises multiple distinct regions of uncertain shape (e.g. blood vessels, airways, bone tissue). We show that this common yet difficult scenario can be modeled as an energy over multiple interacting surfaces, and can be globally optimized by a single graph cut. Second, we introduce multi-label energies with label costs and provide algorithms to minimize them. We show how label costs are useful for clustering and robust estimation problems in vision. Third, we characterize a class of energies with hierarchical costs and propose a novel hierarchical fusion algorithm with improved approximation guarantees. Hierarchical costs are natural for modeling an array of difficult problems, e.g. segmentation with hierarchical context, simultaneous estimation of motions and homographies, or detecting hierarchies of patterns

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Linear Programming Tools and Approximation Algorithms for Combinatorial Optimization

    Get PDF
    We study techniques, approximation algorithms, structural properties and lower bounds related to applications of linear programs in combinatorial optimization. The following "Steiner tree problem" is central: given a graph with a distinguished subset of required vertices, and costs for each edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of network design, multicommodity flows, and packing/covering integer programs. All of these problems are NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. Overall, we show some new techniques that enhance the already-substantial corpus of LP-based approximation methods, and we also look for limitations of these techniques. The first half of the thesis deals with linear programming relaxations for the Steiner tree problem. The crux of our work deals with hypergraphic relaxations obtained via the well-known full component decomposition of Steiner trees; explicitly, in this view the fundamental building blocks are not edges, but hyperedges containing two or more required vertices. We introduce a new hypergraphic LP based on partitions. We show the new LP has the same value as several previously-studied hypergraphic ones; when no Steiner nodes are adjacent, we show that the value of the well-known bidirected cut relaxation is also the same. A new partition uncrossing technique is used to demonstrate these equivalences, and to show that extreme points of the new LP are well-structured. We improve the best known integrality gap on these LPs in some special cases. We show that several approximation algorithms from the literature on Steiner trees can be re-interpreted through linear programs, in particular our hypergraphic relaxation yields a new view of the Robins-Zelikovsky 1.55-approximation algorithm for the Steiner tree problem. The second half of the thesis deals with a variety of fundamental problems in combinatorial optimization. We show how to apply the iterated LP relaxation framework to the problem of multicommodity integral flow in a tree, to get an approximation ratio that is asymptotically optimal in terms of the minimum capacity. Iterated relaxation gives an infeasible solution, so we need to finesse it back to feasibility without losing too much value. Iterated LP relaxation similarly gives an O(k^2)-approximation algorithm for packing integer programs with at most k occurrences of each variable; new LP rounding techniques give a k-approximation algorithm for covering integer programs with at most k variable per constraint. We study extreme points of the standard LP relaxation for the traveling salesperson problem and show that they can be much more complex than was previously known. The k-edge-connected spanning multi-subgraph problem has the same LP and we prove a lower bound and conjecture an upper bound on the approximability of variants of this problem. Finally, we show that for packing/covering integer programs with a bounded number of constraints, for any epsilon > 0, there is an LP with integrality gap at most 1 + epsilon
    corecore