2,879 research outputs found

    Coding Theorems of Quantum Information Theory

    Get PDF
    Coding theorems and (strong) converses for memoryless quantum communication channels and quantum sources are proved: for the quantum source the coding theorem is reviewed, and the strong converse proven. For classical information transmission via quantum channels we give a new proof of the coding theorem, and prove the strong converse, even under the extended model of nonstationary channels. As a by-product we obtain a new proof of the famous Holevo bound. Then multi-user systems are investigated, and the capacity region for the quantum multiple access channel is determined. The last chapter contains a preliminary discussion of some models of compression of correlated quantum sources, and a proposal for a program to obtain operational meaning for quantum conditional entropy. An appendix features the introduction of a notation and calculus of entropy in quantum systems.Comment: 80 pages, Ph.D. dissertation, Uni Bielefel

    A Fundamental Inequality for Lower-bounding the Error Probability for Classical and Quantum Multiple Access Channels and Its Applications

    Full text link
    In the study of the capacity problem for multiple access channels (MACs), a lower bound on the error probability obtained by Han plays a crucial role in the converse parts of several kinds of channel coding theorems in the information-spectrum framework. Recently, Yagi and Oohama showed a tighter bound than the Han bound by means of Polyanskiy's converse. In this paper, we give a new bound which generalizes and strengthens the Yagi-Oohama bound, and demonstrate that the bound plays a fundamental role in deriving extensions of several known bounds. In particular, the Yagi-Oohama bound is generalized to two different directions; i.e, to general input distributions and to general encoders. In addition we extend these bounds to the quantum MACs and apply them to the converse problems for several information-spectrum settings.Comment: under submissio

    Strong converse for the classical capacity of optical quantum communication channels

    Get PDF
    We establish the classical capacity of optical quantum channels as a sharp transition between two regimes---one which is an error-free regime for communication rates below the capacity, and the other in which the probability of correctly decoding a classical message converges exponentially fast to zero if the communication rate exceeds the classical capacity. This result is obtained by proving a strong converse theorem for the classical capacity of all phase-insensitive bosonic Gaussian channels, a well-established model of optical quantum communication channels, such as lossy optical fibers, amplifier and free-space communication. The theorem holds under a particular photon-number occupation constraint, which we describe in detail in the paper. Our result bolsters the understanding of the classical capacity of these channels and opens the path to applications, such as proving the security of noisy quantum storage models of cryptography with optical links.Comment: 15 pages, final version accepted into IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:1312.328

    Strong converse rates for classical communication over thermal and additive noise bosonic channels

    Get PDF
    We prove that several known upper bounds on the classical capacity of thermal and additive noise bosonic channels are actually strong converse rates. Our results strengthen the interpretation of these upper bounds, in the sense that we now know that the probability of correctly decoding a classical message rapidly converges to zero in the limit of many channel uses if the communication rate exceeds these upper bounds. In order for these theorems to hold, we need to impose a maximum photon number constraint on the states input to the channel (the strong converse property need not hold if there is only a mean photon number constraint). Our first theorem demonstrates that Koenig and Smith's upper bound on the classical capacity of the thermal bosonic channel is a strong converse rate, and we prove this result by utilizing the structural decomposition of a thermal channel into a pure-loss channel followed by an amplifier channel. Our second theorem demonstrates that Giovannetti et al.'s upper bound on the classical capacity of a thermal bosonic channel corresponds to a strong converse rate, and we prove this result by relating success probability to rate, the effective dimension of the output space, and the purity of the channel as measured by the Renyi collision entropy. Finally, we use similar techniques to prove that similar previously known upper bounds on the classical capacity of an additive noise bosonic channel correspond to strong converse rates.Comment: Accepted for publication in Physical Review A; minor changes in the text and few reference

    The Capacity of the Quantum Multiple Access Channel

    Full text link
    We define classical-quantum multiway channels for transmission of classical information, after recent work by Allahverdyan and Saakian. Bounds on the capacity region are derived in a uniform way, which are analogous to the classically known ones, simply replacing Shannon entropy with von Neumann entropy. For the single receiver case (multiple access channel) the exact capacity region is determined. These results are applied to the case of noisy channels, with arbitrary input signal states. A second issue of this work is the presentation of a calculus of quantum information quantities, based on the algebraic formulation of quantum theory.Comment: 7 pages, requires IEEEtran2e.cl

    Strong converse rates for quantum communication

    Get PDF
    We revisit a fundamental open problem in quantum information theory, namely whether it is possible to transmit quantum information at a rate exceeding the channel capacity if we allow for a non-vanishing probability of decoding error. Here we establish that the Rains information of any quantum channel is a strong converse rate for quantum communication: For any sequence of codes with rate exceeding the Rains information of the channel, we show that the fidelity vanishes exponentially fast as the number of channel uses increases. This remains true even if we consider codes that perform classical post-processing on the transmitted quantum data. As an application of this result, for generalized dephasing channels we show that the Rains information is also achievable, and thereby establish the strong converse property for quantum communication over such channels. Thus we conclusively settle the strong converse question for a class of quantum channels that have a non-trivial quantum capacity.Comment: v4: 13 pages, accepted for publication in IEEE Transactions on Information Theor

    Classical capacity of bosonic broadcast communication and a new minimum output entropy conjecture

    Full text link
    Previous work on the classical information capacities of bosonic channels has established the capacity of the single-user pure-loss channel, bounded the capacity of the single-user thermal-noise channel, and bounded the capacity region of the multiple-access channel. The latter is a multi-user scenario in which several transmitters seek to simultaneously and independently communicate to a single receiver. We study the capacity region of the bosonic broadcast channel, in which a single transmitter seeks to simultaneously and independently communicate to two different receivers. It is known that the tightest available lower bound on the capacity of the single-user thermal-noise channel is that channel's capacity if, as conjectured, the minimum von Neumann entropy at the output of a bosonic channel with additive thermal noise occurs for coherent-state inputs. Evidence in support of this minimum output entropy conjecture has been accumulated, but a rigorous proof has not been obtained. In this paper, we propose a new minimum output entropy conjecture that, if proved to be correct, will establish that the capacity region of the bosonic broadcast channel equals the inner bound achieved using a coherent-state encoding and optimum detection. We provide some evidence that supports this new conjecture, but again a full proof is not available.Comment: 13 pages, 7 figure

    Capacity Theorems for Quantum Multiple Access Channels

    Full text link
    We consider quantum channels with two senders and one receiver. For an arbitrary such channel, we give multi-letter characterizations of two different two-dimensional capacity regions. The first region characterizes the rates at which it is possible for one sender to send classical information while the other sends quantum information. The second region gives the rates at which each sender can send quantum information. We give an example of a channel for which each region has a single-letter description, concluding with a characterization of the rates at which each user can simultaneously send classical and quantum information.Comment: 5 pages. Conference version of quant-ph/0501045, to appear in the proceedings of the IEEE International Symposium on Information Theory, Adelaide, Australia, 200
    • …
    corecore