9 research outputs found

    COUNTING AND CORRELATORS IN QUIVER GAUGE THEORIES

    Get PDF
    PhdQuiver gauge theories are widely studied in the context of AdS/CFT, which establishes a correspondence between CFTs and string theories. CFTs in turn offer a map between quantum states and Gauge Invariant Operators (GIOs). This thesis presents results on the counting and correlators of holomorphic GIOs in quiver gauge theories with flavour symmetries, in the zero coupling limit. We first give a prescription to build a basis of holomorphic matrix invariants, labelled by representation theory data. A fi nite N counting function of these GIOs is then given in terms of Littlewood-Richardson coefficients. In the large N limit, the generating function simpli fies to an in finite product of determinants, which depend only on the weighted adjacency matrix associated with the quiver. The building block of this product has a counting interpretation by itself, expressed in terms of words formed by partially commuting letters associated with closed loops in the quiver. This is a new relation between counting problems in gauge theory and the Cartier-Foata monoid. We compute the free fi eld two and three point functions of the matrix invariants. These have a non-trivial dependence on the structure of the operators and on the ranks of the gauge and flavour symmetries: our results are exact in the ranks, and their expansions contain information beyond the planar limit. We introduce a class of permutation centraliser algebras, which give a precise characterisation of the minimal set of charges needed to distinguish arbitrary matrix invariants. For the two-matrix model, the relevant non-commutative algebra is parametrised by two integers. Its Wedderburn-Artin decomposition explains the counting of restricted Schur operators. The structure of the algebra, notably its dimension, its centre and its maximally commuting sub-algebra, is related to Littlewood-Richardson numbers for composing Young diagrams

    The chern-simons topological quantum field theory and the so(8) large color R-matrix for quantum knot invariants

    Get PDF
    A física teòrica, la Teoria Quàntica de Camps (TQC) és un marc teòric extremadament reeixit que combina la Relativitat Especial amb la Mecànica Quàntica, permetent el diseny de models físics de les partícules subatómiques i quasipartícules que descriuen els aspectes més fundamentals de la matèria amb una precisió increïblement alta. Entre aquestes teories, la TQC Chern-Simons és una especial, que no només descriu fenòmens topològics a la física com ara l’Efecte Hall Quàntic, sinó que encaixa amb la noció del que es coneix com una Teoria Topològica de Camps Quàntics (TTCQ). Va ser fent servir aquests axiomes de les TTCQs que Edward Witten va mostrar al 1989 com d’estretament relacionada està la teoria de Chern-Simons amb l’àmbit d’invariants polinòmics que apareixen a la Teoria de Nusos, com ara el ben conegut polinomi de Jones. En aquests darrers anys, investigacions en aquest camp han donat lloc a nous i més poderosos invariants d’enllaços i, a través de cirurgies de Dehn sobre ells, de 3-varietats també. Per exemple, la sèrie de Gukov-Manolescu recentment proposta el 2020 —denotada FK(x, q)— és un invariant conjectural de complements de nusos que, en cert sentit, continua analíticament els polinomis de Jones colorejats. Poc després, Sunghyuk Park va introduir l’enfoc de la Matriu R de Gran Color corresponent a sl(2,C) per estudiar FK per trenats positius i calcular FK per a diversos nusos i enllaços. Aquest procediment ha estat així mateix extès per Angus Gruen a totes les altres àlgebres de Lie sl(n+1) més enllà de sl(2). En aquest treball, després d’un extens repàs sobre els anteriorment esmentats conceptes, abordem la família so(2n) d’àlgebres de Lie semisimples sobre els complexos a la classificació de Cartan, centrant-nos principalment en el cas so(8) atrets per la simetria triple al seu diagrama de Dynkin D4.En física teórica, la Teoría Cuántica de Campos (TCC) es un marco teórico extremadamente exitoso que combina la Relatividad Especial con la Mecánica Cuántica, permitiendo el diseño de modelos físicos de las partículas subatómicas y cuasipartículas que describen los aspectos más fundamentales de la materia con una precisión increíblemente alta. Entre dichas teorías, la TCC Chern-Simons es una especial, que no sólo describe fenómenos topológicos en física tales como el Efecto Hall Cuántico, sino que encaja con la noción de lo que se conoce como una Teoría Topológica de Campos Cuánticos (TTCC). Fue utilizando estos axiomas de las TTCCs que Edward Witten mostró en 1989 cómo de estrechamente relacionada está la teoría de Chern-Simons con el ámbito de invariantes polinómicos que aparecen en la Teoría de Nudos, tales como el bien conocido polinomio de Jones. En estos últimos años, investigaciones en este campo han dado lugar a nuevos y más poderosos invariantes de enlaces y, a través de cirugías de Dehn sobre ellos, así mismo de 3-variedades. Por ejemplo, la serie de Gukov-Manolescu recientemente propuesta en 2020 —denotada FK(x, q)— es un invariante conjetural de complementos de nudos que, en cierto sentido, continúa analíticamente los polinomios de Jones coloreados. Poco después, Sunghyuk Park introdujo el enfoque de la Matriz R de Gran Color correspondiente a sl(2,C) para estudiar FK para trenzados positivos y calcular FK para varios nudos y enlaces. Este procedimiento ha sido a su vez extendido por Angus Gruen a todas las otras álgebras de Lie sl(n+1) más allá de sl(2). En la presente obra, tras un extenso repaso sobre los anteriormente mencionados conceptos, abordamos la família so(2n) de álgebras de Lie semisimples sobre los complejos en la clasificación de Cartan, centrándonos principalmente en el caso so(8) atraídos por la simetría triple en su diagrama de Dynkin D4.In theoretical physics, Quantum Field Theory (QFT) is an extremely successful theoretical framework combining both Special Relativity and Quantum Mechanics, enabling to design physical models of subatomic particles and quasiparticles describing the most fundamental aspects of matter with an incredibly high accuracy. Among these theories, the Chern-Simons QFT is a special one, not only describing topological phenomena in physics such as the Quantum Hall Effect, but also fitting the notion of what is known as a Topological Quantum Field Theory (TQFT). It was by using the axioms of TQFTs that Edward Witten showed back in 1989 how closely related the Chern-Simons theory is to the realm of polynomial invariants appearing in Knot Theory, such as the well-known Jones polynomial. In the past years, further research in this field has led to new and more powerful invariants of links and, by means of Dehn surgeries on them, of 3-manifolds as well. For instance, the Gukov-Manolescu series proposed recently in 2020 —denoted FK(x, q)— is a conjectural invariant of knot complements that, in a sense, analytically continues the colored Jones polynomials. Shortly after, Sunghyuk Park introduced the Large Color R-matrix approach for sl(2,C) to study FK for some simple links, giving a definition of FK for positive braid knots and computing FK for various knots and links. This procedure has in turn been extended by Angus Gruen to all other Lie algebras sl(n+1) beyond sl(2). In this work, after a broad review on the above mentioned background, we move on to the family so(2n) of complex semisimple Lie algebras in Cartan’s classification, mainly focusing on the so(8) case attracted by the three-fold symmetry in its Dynkin diagram D4.Outgoin

    Knots, Trees, and Fields: Common Ground Between Physics and Mathematics

    Get PDF
    One main theme of this thesis is a connection between mathematical physics (in particular, the three-dimensional topological quantum field theory known as Chern-Simons theory) and three-dimensional topology. This connection arises because the partition function of Chern-Simons theory provides an invariant of three-manifolds, and the Wilson-loop observables in the theory define invariants of knots. In the first chapter, we review this connection, as well as more recent work that studies the classical limit of quantum Chern-Simons theory, leading to relations to another knot invariant known as the A-polynomial. (Roughly speaking, this invariant can be thought of as the moduli space of flat SL(2,C) connections on the knot complement.) In fact, the connection can be deepened: through an embedding into string theory, categorifications of polynomial knot invariants can be understood as spaces of BPS states. We go on to study these homological knot invariants, and interpret spectral sequences that relate them to one another in terms of perturbations of supersymmetric theories. Our point is more general than the application to knots; in general, when one perturbs any modulus of a supersymmetric theory and breaks a symmetry, one should expect a spectral sequence to relate the BPS states of the unperturbed and perturbed theories. We consider several diverse instances of this general lesson. In another chapter, we consider connections between supersymmetric quantum mechanics and the de Rham version of homotopy theory developed by Sullivan; this leads to a new interpretation of Sullivan's minimal models, and of Massey products as vacuum states which are entangled between different degrees of freedom in these models. We then turn to consider a discrete model of holography: a Gaussian lattice model defined on an infinite tree of uniform valence. Despite being discrete, the matching of bulk isometries and boundary conformal symmetries takes place as usual; the relevant group is PGL(2,Qp), and all of the formulas developed for holography in the context of scalar fields on fixed backgrounds have natural analogues in this setting. The key observation underlying this generalization is that the geometry underlying AdS3/CFT2 can be understood algebraically, and the base field can therefore be changed while maintaining much of the structure. Finally, we give some analysis of A-polynomials under change of base (to finite fields), bringing things full circle.</p

    Physics and Mathematics of Graded Quivers

    Full text link
    A graded quiver with superpotential is a quiver whose arrows are assigned degrees c ∈ {0, 1, · · · , m}, for some integer m ≥ 0, with relations generated by a superpotential of degree m − 1. For m = 0, 1, 2, 3 they often describe the open string sector of D-brane systems; in particular, they capture the physics of D(5 − 2m)-branes at local Calabi-Yau (CY) (m + 2)- fold singularities in type IIB string theory. We introduce m-dimers, which fully encode the m-graded quivers and their superpotentials, in the case in which the CY (m + 2)-folds are toric. A key result is the generalization of the concept of perfect matching, which plays a central role in this map, to arbitrary m. We also introduce a simplified algorithm for the computation of perfect matchings, which generalizes the Kasteleyn matrix approach to any m. We also explore various algorithms for constructing dimer models. We give a physical realization to m-dimers for m \u3e 3, showing that for any m they describe the open string sector of the topological B-model on Xm+2. We illustrate these ideas explicitly with a few infinite families of toric singularities indexed by m ∈ N, for which we derive graded quivers associated to the geometry, using several complementary perspectives developed in this thesis

    On-Shell Methods and Effective Field Theory

    Full text link
    Effective field theory methods are now widely used, in both formal and phenomenological contexts, to efficiently study universal aspects of low-energy physics. In many cases, the computational complexity associated with constructing appropriate Wilsonian effective actions and calculating observables using the traditional Feynman diagram expansion, produces a barrier to what is practically calculable. In this thesis I use a variety of modern quantum field theory approaches, including on-shell methods, to efficiently calculate physical observables in EFTs in a variety of physical contexts. Results include: 1) A systematic analysis of soft theorems for photons and gravitons incorporating the effects of generic effective operators. Consistency with spacetime locality is used to prove that the recently discovered subleading soft graviton theorem is universal in generic EFTs. 2) The development of the numerical soft bootstrap algorithm incorporating Goldstone modes with spin and linearly realized supersymmetry. 3) The use of generalized unitarity methods to calculate two infinite classes of electromagnetic duality violating one-loop amplitudes in Born-Infeld electrodynamics. It is explicitly demonstrated that the duality violation can be removed by the addition of finite local counterterms, providing strong evidence that duality is unbroken by quantization. 4) The extension of the black hole Weak Gravity Conjecture to low-energy EFTs of quantum gravity with asymptotically flat boundary conditions and arbitrary numbers of U(1) gauge fields. Using on-shell methods we give a novel proof of a one-loop non-renormalization theorem in Einstein-Maxwell and use it to extend a recently given renormalization group argument for the WGC. 5) A systematic analysis of the leading higher-derivative corrections to the thermodynamic properties of charged black holes with asymptotically AdS boundary conditions in arbitrary dimensions. We generalize a recent conjecture for the positivity of the leading correction to the microcanonical entropy of thermodynamically stable black holes and demonstrate that this implies the positivity of c-a in a dual CFT.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155124/1/jonescal_1.pd

    A high resolution model for multiple source dispersion of air pollutants under complex atmospheric structure.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 1986.No abstract available
    corecore