12 research outputs found

    Decentralized and stable matching in Peer-to-Peer energy trading

    Full text link
    In peer-to-peer (P2P) energy trading, a secured infrastructure is required to manage trade and record monetary transactions. A central server/authority can be used for this. But there is a risk of central authority influencing the energy price. So blockchain technology is being preferred as a secured infrastructure in P2P trading. Blockchain provides a distributed repository along with smart contracts for trade management. This reduces the influence of central authority in trading. However, these blockchain-based systems still rely on a central authority to pair/match sellers with consumers for trading energy. The central authority can interfere with the matching process to profit a selected set of users. Further, a centralized authority also charges for its services, thereby increasing the cost of energy. We propose two distributed mechanisms to match sellers with consumers. The first mechanism doesn't allow for price negotiations between sellers and consumers, whereas the second does. We also calculate the time complexity and the stability of the matching process for both mechanisms. Using simulation, we compare the influence of centralized control and energy prices between the proposed and the existing mechanisms. The overall work strives to promote the free market and reduce energy prices

    Coordination in Service Value Networks - A Mechanism Design Approach

    Get PDF
    The fundamental paradigm shift from traditional value chains to agile service value networks (SVN) implies new economic and organizational challenges. This work provides an auction-based coordination mechanism that enables the allocation and pricing of service compositions in SVNs. The mechanism is multidimensional incentive compatible and implements an ex-post service level enforcement. Further extensions of the mechanism are evaluated following analytical and numerical research methods

    Achieving reliability and fairness in online task computing environments

    Get PDF
    Mención Internacional en el título de doctorWe consider online task computing environments such as volunteer computing platforms running on BOINC (e.g., SETI@home) and crowdsourcing platforms such as Amazon Mechanical Turk. We model the computations as an Internet-based task computing system under the masterworker paradigm. A master entity sends tasks across the Internet, to worker entities willing to perform a computational task. Workers execute the tasks, and report back the results, completing the computational round. Unfortunately, workers are untrustworthy and might report an incorrect result. Thus, the first research question we answer in this work is how to design a reliable masterworker task computing system. We capture the workers’ behavior through two realistic models: (1) the “error probability model” which assumes the presence of altruistic workers willing to provide correct results and the presence of troll workers aiming at providing random incorrect results. Both types of workers suffer from an error probability altering their intended response. (2) The “rationality model” which assumes the presence of altruistic workers, always reporting a correct result, the presence of malicious workers always reporting an incorrect result, and the presence of rational workers following a strategy that will maximize their utility (benefit). The rational workers can choose among two strategies: either be honest and report a correct result, or cheat and report an incorrect result. Our two modeling assumptions on the workers’ behavior are supported by an experimental evaluation we have performed on Amazon Mechanical Turk. Given the error probability model, we evaluate two reliability techniques: (1) “voting” and (2) “auditing” in terms of task assignments required and time invested for computing correctly a set of tasks with high probability. Considering the rationality model, we take an evolutionary game theoretic approach and we design mechanisms that eventually achieve a reliable computational platform where the master receives the correct task result with probability one and with minimal auditing cost. The designed mechanisms provide incentives to the rational workers, reinforcing their strategy to a correct behavior, while they are complemented by four reputation schemes that cope with malice. Finally, we also design a mechanism that deals with unresponsive workers by keeping a reputation related to the workers’ response rate. The designed mechanism selects the most reliable and active workers in each computational round. Simulations, among other, depict the trade-off between the master’s cost and the time the system needs to reach a state where the master always receives the correct task result. The second research question we answer in this work concerns the fair and efficient distribution of workers among the masters over multiple computational rounds. Masters with similar tasks are competing for the same set of workers at each computational round. Workers must be assigned to the masters in a fair manner; when the master values a worker’s contribution the most. We consider that a master might have a strategic behavior, declaring a dishonest valuation on a worker in each round, in an attempt to increase its benefit. This strategic behavior from the side of the masters might lead to unfair and inefficient assignments of workers. Applying renown auction mechanisms to solve the problem at hand can be infeasible since monetary payments are required on the side of the masters. Hence, we present an alternative mechanism for fair and efficient distribution of the workers in the presence of strategic masters, without the use of monetary incentives. We show analytically that our designed mechanism guarantees fairness, is socially efficient, and is truthful. Simulations favourably compare our designed mechanism with two benchmark auction mechanisms.This work has been supported by IMDEA Networks Institute and the Spanish Ministry of Education grant FPU2013-03792.Programa Oficial de Doctorado en Ingeniería MatemáticaPresidente: Alberto Tarable.- Secretario: José Antonio Cuesta Ruiz.- Vocal: Juan Julián Merelo Guervó

    Automated Markets and Trading Agents

    Full text link
    Computer automation has the potential, just starting to be realized, of transforming the design and operation of markets, and the behaviors of agents trading in them. We discuss the possibilities for automating markets, presenting a broad conceptual framework covering resource allocation as well as enabling marketplace services such as search and transaction execution. One of the most intriguing opportunities is provided by markets implementing computationally sophisticated negotiation mechanisms, for example combinatorial auctions. An important theme that emerges from the literature is the centrality of design decisions about matching the domain of goods over which a mechanism operates to the domain over which agents have preferences. When the match is imperfect (as is almost inevitable), the market game induced by the mechanism is analytically intractable, and the literature provides an incomplete characterization of rational bidding policies. A review of the literature suggests that much of our existing knowledge comes from computational simulations, including controlled studies of abstract market designs (e.g., simultaneous ascending auctions), and research tournaments comparing agent strategies in a variety of market scenarios. An empirical game-theoretic methodology combines the advantages of simulation, agent-based modeling, and statistical and game-theoretic analysis.http://deepblue.lib.umich.edu/bitstream/2027.42/49510/1/ace_galleys.pd

    Coordination in Service Value Networks : A Mechanism Design Approach

    Get PDF
    The fundamental paradigm shift from traditional value chains to agile service value networks (SVN) implies new economic and organizational challenges. This work provides an auction-based coordination mechanism that enables the allocation and pricing of service compositions in SVNs. The mechanism is multidimensional incentive compatible and implements an ex-post service level enforcement. Further extensions of the mechanism are evaluated following analytical and numerical research methods
    corecore