14 research outputs found

    Hierarchical Analysis of Branching Patterns

    Get PDF
    制度:新 ; 報告番号:甲3309号 ; 学位の種類:博士(理学) ; 授与年月日:2011/3/15 ; 早大学位記番号:新561

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Subject Index Volumes 1–200

    Get PDF

    Information gathering in ad-hoc radio networks with tree topology

    Get PDF
    We study the problem of information gathering in ad-hoc radio networks, focusing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a rumor, and we aim to deliver all rumors to the root as quickly as possible without knowing the tree's topology in advance. In the deterministic case, where nodes are labeled with small integers, we give an -time protocol for the model with unbounded message size, and an -time protocol for bounded message size. We also consider fire-and-forward protocols, in which nodes can transmit only their own rumor or the rumor received in the previous step. We give a deterministic fire-and-forward protocol with running time , and show that it is asymptotically optimal. We also present a randomized -time protocol in the model without node labels or aggregation, and show that it is asymptotically optimal
    corecore