2,447 research outputs found

    Structure in the 3D Galaxy Distribution: I. Methods and Example Results

    Full text link
    Three methods for detecting and characterizing structure in point data, such as that generated by redshift surveys, are described: classification using self-organizing maps, segmentation using Bayesian blocks, and density estimation using adaptive kernels. The first two methods are new, and allow detection and characterization of structures of arbitrary shape and at a wide range of spatial scales. These methods should elucidate not only clusters, but also the more distributed, wide-ranging filaments and sheets, and further allow the possibility of detecting and characterizing an even broader class of shapes. The methods are demonstrated and compared in application to three data sets: a carefully selected volume-limited sample from the Sloan Digital Sky Survey redshift data, a similarly selected sample from the Millennium Simulation, and a set of points independently drawn from a uniform probability distribution -- a so-called Poisson distribution. We demonstrate a few of the many ways in which these methods elucidate large scale structure in the distribution of galaxies in the nearby Universe.Comment: Re-posted after referee corrections along with partially re-written introduction. 80 pages, 31 figures, ApJ in Press. For full sized figures please download from: http://astrophysics.arc.nasa.gov/~mway/lss1.pd

    Pseudolikelihood inference for Gibbsian T-tessellations ... and point processes

    Full text link
    Recently a new class of planar tessellations, named T-tessellations, was introduced. Splits, merges and a third local modification named flip where shown to be sufficient for exploring the space of T-tessellations. Based on these local transformations and by analogy with point process theory, tools Campbell measures and a general simulation algorithm of Metropolis-Hastings-Green type were translated for random T-tessellations.The current report is concerned with parametric inference for Gibbs models of T-tessellations. The estimation criterion referred to as the pseudolikelihood is derived from Campbell measures of random T-tessellations and the Kullback-Leibler divergence. A detailed algorithm for approximating the pseudolikelihood maximum is provided. A simulation study seems to show that bias and variability of the pseudolikelihood maximum decrease when the tessellated domain grows in size.In the last part of the report, it is shown that an analogous approach based on the Campbell measure and the KL divergence when applied to point processes leads to the well-known pseudo-likelihood introduced by Besag. More surprisingly, the binomial regression method recently proposed by Baddeley and his co-authors for computing the pseudolikelihood maximum can be derived using the same approach starting from a slight modification of the Campbell measure

    Elastic moduli of model random three-dimensional closed-cell cellular solids

    Full text link
    Most cellular solids are random materials, while practically all theoretical results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (ρ\rho) and microstructure dependence of the Young's modulus (EE) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law EρnE\propto\rho^n (1<n<21 < n <2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data.Comment: 13 pages, 13 figure

    Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web

    Full text link
    We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the topological information content of the cosmic mass distribution. While the Betti numbers do not fully quantify topology, they extend the information beyond conventional cosmological studies of topology in terms of genus and Euler characteristic. The richer information content of Betti numbers goes along the availability of fast algorithms to compute them. For continuous density fields, we determine the scale-dependence of Betti numbers by invoking the cosmologically familiar filtration of sublevel or superlevel sets defined by density thresholds. For the discrete galaxy distribution, however, the analysis is based on the alpha shapes of the particles. These simplicial complexes constitute an ordered sequence of nested subsets of the Delaunay tessellation, a filtration defined by the scale parameter, α\alpha. As they are homotopy equivalent to the sublevel sets of the distance field, they are an excellent tool for assessing the topological structure of a discrete point distribution. In order to develop an intuitive understanding for the behavior of Betti numbers as a function of α\alpha, and their relation to the morphological patterns in the Cosmic Web, we first study them within the context of simple heuristic Voronoi clustering models. Subsequently, we address the topology of structures emerging in the standard LCDM scenario and in cosmological scenarios with alternative dark energy content. The evolution and scale-dependence of the Betti numbers is shown to reflect the hierarchical evolution of the Cosmic Web and yields a promising measure of cosmological parameters. We also discuss the expected Betti numbers as a function of the density threshold for superlevel sets of a Gaussian random field.Comment: 42 pages, 14 figure

    Voronoi Tessellations and the Cosmic Web: Spatial Patterns and Clustering across the Universe

    Full text link
    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural asymptotic result of an evolution in which low-density expanding void regions dictate the spatial organization of the Megaparsec Universe, while matter assembles in high-density filamentary and wall-like interstices between the voids. We describe the results of ongoing investigations of a variety of aspects of cosmologically relevant spatial distributions and statistics within the framework of Voronoi tessellations. Particularly enticing is the finding of a profound scaling of both clustering strength and clustering extent for the distribution of tessellation nodes, suggestive for the clustering properties of galaxy clusters. Cellular patterns may be the source of an intrinsic ``geometrically biased'' clustering.Comment: 10 pages, 9 figures, accepted for publication as long paper in proceedings Fourth International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007), ed. C. Gold, IEEE Computer Society, July 2007. For high-res version see http://www.astro.rug.nl/~weygaert/tim1publication/vorwey.isvd07.pd

    The oscillating behavior of the pair correlation function in galaxies

    Full text link
    The pair correlation function (PCF) for galaxies presents typical oscillations in the range 20-200 Mpc/h which are named baryon acoustic oscillation (BAO). We first review and test the oscillations of the PCF when the 2D/3D vertexes of the Poissonian Voronoi Tessellation (PVT) are considered. We then model the behavior of the PCF at a small scale in the presence of an auto gravitating medium having a line/plane of symmetry in 2D/3D. The analysis of the PCF in an astrophysical context was split into two, adopting a non-Poissonian Voronoi Tessellation (NPVT). We first analyzed the case of a 2D cut which covers few voids and a 2D cut which covers approximately 50 voids. The obtained PCF in the case of many voids was then discussed in comparison to the bootstrap predictions for a PVT process and the observed PCF for an astronomical catalog. An approximated formula which connects the averaged radius of the cosmic voids to the first minimum of the PCF is given.Comment: 19 pages 14 figure

    Statistics of cross sections of Voronoi tessellations

    Get PDF
    In this paper we investigate relationships between the volumes of cells of three-dimensional Voronoi tessellations and the lengths and areas of sections obtained by intersecting the tessellation with a randomly oriented plane. Here, in order to obtain analytical results, Voronoi cells are approximated to spheres. First, the probability density function for the lengths of the radii of the sections is derived and it is shown that it is related to the Meijer GG-function; its properties are discussed and comparisons are made with the numerical results. Next the probability density function for the areas of cross sections is computed and compared with the results of numerical simulations.Comment: 10 pages and 6 figure

    The VOISE Algorithm: a Versatile Tool for Automatic Segmentation of Astronomical Images

    Full text link
    The auroras on Jupiter and Saturn can be studied with a high sensitivity and resolution by the Hubble Space Telescope (HST) ultraviolet (UV) and far-ultraviolet (FUV) Space Telescope spectrograph (STIS) and Advanced Camera for Surveys (ACS) instruments. We present results of automatic detection and segmentation of Jupiter's auroral emissions as observed by HST ACS instrument with VOronoi Image SEgmentation (VOISE). VOISE is a dynamic algorithm for partitioning the underlying pixel grid of an image into regions according to a prescribed homogeneity criterion. The algorithm consists of an iterative procedure that dynamically constructs a tessellation of the image plane based on a Voronoi Diagram, until the intensity of the underlying image within each region is classified as homogeneous. The computed tessellations allow the extraction of quantitative information about the auroral features such as mean intensity, latitudinal and longitudinal extents and length scales. These outputs thus represent a more automated and objective method of characterising auroral emissions than manual inspection.Comment: 9 pages, 7 figures; accepted for publication in MNRA
    corecore