4,747 research outputs found

    A Stochastic Quasi-Newton Method with Nesterov's Accelerated Gradient

    Full text link
    Incorporating second order curvature information in gradient based methods have shown to improve convergence drastically despite its computational intensity. In this paper, we propose a stochastic (online) quasi-Newton method with Nesterov's accelerated gradient in both its full and limited memory forms for solving large scale non-convex optimization problems in neural networks. The performance of the proposed algorithm is evaluated in Tensorflow on benchmark classification and regression problems. The results show improved performance compared to the classical second order oBFGS and oLBFGS methods and popular first order stochastic methods such as SGD and Adam. The performance with different momentum rates and batch sizes have also been illustrated.Comment: Accepted at ECML-PKDD 201

    A Linearly-Convergent Stochastic L-BFGS Algorithm

    Full text link
    We propose a new stochastic L-BFGS algorithm and prove a linear convergence rate for strongly convex and smooth functions. Our algorithm draws heavily from a recent stochastic variant of L-BFGS proposed in Byrd et al. (2014) as well as a recent approach to variance reduction for stochastic gradient descent from Johnson and Zhang (2013). We demonstrate experimentally that our algorithm performs well on large-scale convex and non-convex optimization problems, exhibiting linear convergence and rapidly solving the optimization problems to high levels of precision. Furthermore, we show that our algorithm performs well for a wide-range of step sizes, often differing by several orders of magnitude.Comment: 10 pages, 3 figures in International Conference on Artificial Intelligence and Statistics, 201

    A Stochastic Quasi-Newton Method for Large-Scale Optimization

    Full text link
    The question of how to incorporate curvature information in stochastic approximation methods is challenging. The direct application of classical quasi- Newton updating techniques for deterministic optimization leads to noisy curvature estimates that have harmful effects on the robustness of the iteration. In this paper, we propose a stochastic quasi-Newton method that is efficient, robust and scalable. It employs the classical BFGS update formula in its limited memory form, and is based on the observation that it is beneficial to collect curvature information pointwise, and at regular intervals, through (sub-sampled) Hessian-vector products. This technique differs from the classical approach that would compute differences of gradients, and where controlling the quality of the curvature estimates can be difficult. We present numerical results on problems arising in machine learning that suggest that the proposed method shows much promise

    Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization

    Full text link
    In this paper we study stochastic quasi-Newton methods for nonconvex stochastic optimization, where we assume that noisy information about the gradients of the objective function is available via a stochastic first-order oracle (SFO). We propose a general framework for such methods, for which we prove almost sure convergence to stationary points and analyze its worst-case iteration complexity. When a randomly chosen iterate is returned as the output of such an algorithm, we prove that in the worst-case, the SFO-calls complexity is O(ϵ−2)O(\epsilon^{-2}) to ensure that the expectation of the squared norm of the gradient is smaller than the given accuracy tolerance ϵ\epsilon. We also propose a specific algorithm, namely a stochastic damped L-BFGS (SdLBFGS) method, that falls under the proposed framework. {Moreover, we incorporate the SVRG variance reduction technique into the proposed SdLBFGS method, and analyze its SFO-calls complexity. Numerical results on a nonconvex binary classification problem using SVM, and a multiclass classification problem using neural networks are reported.Comment: published in SIAM Journal on Optimizatio

    Optimization Methods for Large-Scale Machine Learning

    Full text link
    This paper provides a review and commentary on the past, present, and future of numerical optimization algorithms in the context of machine learning applications. Through case studies on text classification and the training of deep neural networks, we discuss how optimization problems arise in machine learning and what makes them challenging. A major theme of our study is that large-scale machine learning represents a distinctive setting in which the stochastic gradient (SG) method has traditionally played a central role while conventional gradient-based nonlinear optimization techniques typically falter. Based on this viewpoint, we present a comprehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior, and highlight opportunities for designing algorithms with improved performance. This leads to a discussion about the next generation of optimization methods for large-scale machine learning, including an investigation of two main streams of research on techniques that diminish noise in the stochastic directions and methods that make use of second-order derivative approximations

    Statistical Inference for the Population Landscape via Moment Adjusted Stochastic Gradients

    Full text link
    Modern statistical inference tasks often require iterative optimization methods to compute the solution. Convergence analysis from an optimization viewpoint only informs us how well the solution is approximated numerically but overlooks the sampling nature of the data. In contrast, recognizing the randomness in the data, statisticians are keen to provide uncertainty quantification, or confidence, for the solution obtained using iterative optimization methods. This paper makes progress along this direction by introducing the moment-adjusted stochastic gradient descents, a new stochastic optimization method for statistical inference. We establish non-asymptotic theory that characterizes the statistical distribution for certain iterative methods with optimization guarantees. On the statistical front, the theory allows for model mis-specification, with very mild conditions on the data. For optimization, the theory is flexible for both convex and non-convex cases. Remarkably, the moment-adjusting idea motivated from "error standardization" in statistics achieves a similar effect as acceleration in first-order optimization methods used to fit generalized linear models. We also demonstrate this acceleration effect in the non-convex setting through numerical experiments.Comment: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2019, to appea

    Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods

    Full text link
    We present an algorithm for minimizing a sum of functions that combines the computational efficiency of stochastic gradient descent (SGD) with the second order curvature information leveraged by quasi-Newton methods. We unify these disparate approaches by maintaining an independent Hessian approximation for each contributing function in the sum. We maintain computational tractability and limit memory requirements even for high dimensional optimization problems by storing and manipulating these quadratic approximations in a shared, time evolving, low dimensional subspace. Each update step requires only a single contributing function or minibatch evaluation (as in SGD), and each step is scaled using an approximate inverse Hessian and little to no adjustment of hyperparameters is required (as is typical for quasi-Newton methods). This algorithm contrasts with earlier stochastic second order techniques that treat the Hessian of each contributing function as a noisy approximation to the full Hessian, rather than as a target for direct estimation. We experimentally demonstrate improved convergence on seven diverse optimization problems. The algorithm is released as open source Python and MATLAB packages

    Variable Metric Stochastic Approximation Theory

    Full text link
    We provide a variable metric stochastic approximation theory. In doing so, we provide a convergence theory for a large class of online variable metric methods including the recently introduced online versions of the BFGS algorithm and its limited-memory LBFGS variant. We also discuss the implications of our results for learning from expert advice.Comment: Correctment of theorem 3.4. from AISTATS 2009 articl

    Stochastic Trust Region Inexact Newton Method for Large-scale Machine Learning

    Full text link
    Nowadays stochastic approximation methods are one of the major research direction to deal with the large-scale machine learning problems. From stochastic first order methods, now the focus is shifting to stochastic second order methods due to their faster convergence and availability of computing resources. In this paper, we have proposed a novel Stochastic Trust RegiOn Inexact Newton method, called as STRON, to solve large-scale learning problems which uses conjugate gradient (CG) to inexactly solve trust region subproblem. The method uses progressive subsampling in the calculation of gradient and Hessian values to take the advantage of both, stochastic and full-batch regimes. We have extended STRON using existing variance reduction techniques to deal with the noisy gradients and using preconditioned conjugate gradient (PCG) as subproblem solver, and empirically proved that they do not work as expected, for the large-scale learning problems. Finally, our empirical results prove efficacy of the proposed method against existing methods with bench marked datasets.Comment: 32 figures, accepted in International Journal of Machine Learning and Cybernetic

    Stochastic L-BFGS: Improved Convergence Rates and Practical Acceleration Strategies

    Full text link
    We revisit the stochastic limited-memory BFGS (L-BFGS) algorithm. By proposing a new framework for the convergence analysis, we prove improved convergence rates and computational complexities of the stochastic L-BFGS algorithms compared to previous works. In addition, we propose several practical acceleration strategies to speed up the empirical performance of such algorithms. We also provide theoretical analyses for most of the strategies. Experiments on large-scale logistic and ridge regression problems demonstrate that our proposed strategies yield significant improvements vis-\`a-vis competing state-of-the-art algorithms
    • …
    corecore