890 research outputs found

    Hidden Quantum Markov Models and Open Quantum Systems with Instantaneous Feedback

    Full text link
    Hidden Markov Models are widely used in classical computer science to model stochastic processes with a wide range of applications. This paper concerns the quantum analogues of these machines --- so-called Hidden Quantum Markov Models (HQMMs). Using the properties of Quantum Physics, HQMMs are able to generate more complex random output sequences than their classical counterparts, even when using the same number of internal states. They are therefore expected to find applications as quantum simulators of stochastic processes. Here, we emphasise that open quantum systems with instantaneous feedback are examples of HQMMs, thereby identifying a novel application of quantum feedback control.Comment: 10 Pages, proceedings for the Interdisciplinary Symposium on Complex Systems in Florence, September 2014, minor correction

    拡張隠れセミマルコフモデルによる複数系列データモデリングとデータ収集・管理手法

    Get PDF
    In recent years, with the development of devices and the development of data aggregation methods, data to be analyzed and aggregating methods have been changed. Regarding the environment of Internet of Things (IoT), sensors or devices are connected to the communication terminal as access point or mobile phone and the terminal aggregate the sensing data and upload them to the cloud server. From the viewpoint of analysis, the aggregated data are sequential data and the grouped sequence is a meaningful set of sequences because the group represents the owner\u27s information. However, most of the researches for sequential data analysis are specialized for the target data, and not focusing on the "grouped" sequences. In addition from the viewpoint of aggregation, it needs to prepare the special terminals as an access point. The preparation of the equipment takes labor and cost. To analyze the "grouped" sequence and aggregate them without any preparation, this paper aims to realize the analysis method for grouped sequences and to realize the aggregation environment virtually. For analysis of grouped sequential data, we firstly analyze the grouped sequential data focusing on the event sequences and extract the requirements for their modeling. The requirements are (1) the order of events, (2) the duration of the event, (3) the interval between two events, and (4) the overlap of the event. To satisfy all requirements, this paper focuses on the Hidden Semi Markov Model (HSMM) as a base model because it can model the order of events and the duration of event. Then, we consider how to model these sequences with HSMM and propose its extensions. For the former consideration, we propose two models; duration and interval hidden semi-Markov model and interval state hidden-semi Markov model to satisfy both the duration of event and the interval between events simultaneously. For the latter consideration, we consider how to satisfy all requirements including the overlap of the events and propose a new modeling methodology, over-lapped state hidden semi-Markov model. The performance of each method are shown compared with HSMM from the view point of the training and recognition time, the decoding performance, and the recognition performance in the simulation experiment. In the evaluation, practical application data are also used in the simulation and it shows the effectiveness. For the data aggregation, most of conventional approaches for aggregating the grouped data are limited using pre-allocated access points or terminals. It can obtain the grouped data stably, but it needs to additional cost to allocate such terminals in order to aggregate a new group of sequences. Therefore, this paper focus on "area based information" as a target of the grouped sequences, and propose an extraordinary method to store such information using the storage of the terminals that exist in the area. It realize the temporary area based storage virtually by relaying the information with existing terminals in the area. In this approach, it is necessary to restrict the labor of terminals and also store the information as long as possible. To control optimally while the trade-off, we propose methods to control the relay timing and the size of the target storage area in ad hoc dynamically. Simulators are established as practical environment to evaluate the performance of both controlling method. The results show the effectiveness of our method compared with flooding based relay control. As a result of above proposal and evaluation, methods for the grouped sequential data modeling and its aggregation are appeared. Finally, we summarize the research with applicable examples.電気通信大学201

    Privacy-Protecting Techniques for Behavioral Data: A Survey

    Get PDF
    Our behavior (the way we talk, walk, or think) is unique and can be used as a biometric trait. It also correlates with sensitive attributes like emotions. Hence, techniques to protect individuals privacy against unwanted inferences are required. To consolidate knowledge in this area, we systematically reviewed applicable anonymization techniques. We taxonomize and compare existing solutions regarding privacy goals, conceptual operation, advantages, and limitations. Our analysis shows that some behavioral traits (e.g., voice) have received much attention, while others (e.g., eye-gaze, brainwaves) are mostly neglected. We also find that the evaluation methodology of behavioral anonymization techniques can be further improved

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes

    Pattern Recognition for Command and Control Data Systems

    Get PDF
    To analyze real-world events, researchers collect observation data from an underlying process and construct models to represent the observed situation. In this work, we consider issues that affect the construction and usage of a specific type of model. Markov models are commonly used because their combination of discrete states and stochastic transitions is suited to applications with both deterministic and stochastic components. Hidden Markov Models (HMMs) are a class of Markov model commonly used in pattern recognition. We first demonstrate how to construct HMMs using only the observation data, and no a priori information, by extending a previously developed approach from J.P. Crutchfield and C.R. Shalizi. We also show how to determine with a level of statistical confidence whether or not the model fully encapsulates the underlying process. Once models are constructed from observation data, the models are used to identify other types of observations. Traditional approaches consider the maximum likelihood that the model matches the observation, solving a classification problem. We present a new method using confidence intervals and receiver operating characteristic curves. Our method solves a detection problem by determining if observation data matches zero, one, or more than one model. To detect the occurrence of a behavior in observation data, one must consider the amount of data required. We consider behaviors to be \u27serial Markovian,\u27 when the behavior can change from one model to another at any time. When analyzing observation data, considering too much data induces high delay and could lead to confusion in the system if multiple behaviors are observed in the data stream. If too little data is used, the system has a high false positive rate and is unable to correctly detect behaviors. We demonstrate the effectiveness of all methods using illustrative examples and consumer behavior data

    Reconnaissance de l'écriture manuscrite en-ligne par approche combinant systèmes à vastes marges et modèles de Markov cachés

    Get PDF
    Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite having some limitations, handwriting recognition systems have been used as an input method of many electronic devices and helps in the automation of many manual tasks requiring processing of handwriting images. In general, a handwriting recognition system comprises three functional components; preprocessing, recognition and post-processing. There have been improvements made within each component in the system. However, to further open the avenues of expanding its applications, specific improvements need to be made in the recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation densities in HMM and representational model for word modeling often does not lead to good classification. Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN discriminative property and HMM representational capability. However, the use of NN does not optimize recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten word recognition system by using an emerging method in machine learning, the support vector machine (SVM). We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous optimization of representational and discriminative capability of the character recognizer. We finally demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested the hybrid system on the IRONOFF word database and obtained favourable results.Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots
    corecore