396 research outputs found

    Outage Analysis of Full-Duplex Architectures in Cellular Networks

    Full text link
    The implementation of full-duplex (FD) radio in wireless communications is a potential approach for achieving higher spectral efficiency. A possible application is its employment in the next generation of cellular networks. However, the performance of large-scale FD multiuser networks is an area mostly unexplored. Most of the related work focuses on the performance analysis of small-scale networks or on loop interference cancellation schemes. In this paper, we derive the outage probability performance of large-scale FD cellular networks in the context of two architectures: two-node and three-node. We show how the performance is affected with respect to the model's parameters and provide a comparison between the two architectures.Comment: to appear in Proc. IEEE VTC 2015 Spring, Glasgo

    Full-Duplex Cloud Radio Access Network: Stochastic Design and Analysis

    Get PDF
    Full-duplex (FD) has emerged as a disruptive communications paradigm for enhancing the achievable spectral efficiency (SE), thanks to the recent major breakthroughs in self-interference (SI) mitigation. The FD versus half-duplex (HD) SE gain, in cellular networks, is however largely limited by the mutual-interference (MI) between the downlink (DL) and the uplink (UL). A potential remedy for tackling the MI bottleneck is through cooperative communications. This paper provides a stochastic design and analysis of FD enabled cloud radio access network (C-RAN) under the Poisson point process (PPP)-based abstraction model of multi-antenna radio units (RUs) and user equipments (UEs). We consider different disjoint and user-centric approaches towards the formation of finite clusters in the C-RAN. Contrary to most existing studies, we explicitly take into consideration non-isotropic fading channel conditions and finite-capacity fronthaul links. Accordingly, upper-bound expressions for the C-RAN DL and UL SEs, involving the statistics of all intended and interfering signals, are derived. The performance of the FD C-RAN is investigated through the proposed theoretical framework and Monte-Carlo (MC) simulations. The results indicate that significant FD versus HD C-RAN SE gains can be achieved, particularly in the presence of sufficient-capacity fronthaul links and advanced interference cancellation capabilities

    Passive Loop Interference Suppression in Large-Scale Full-Duplex Cellular Networks

    Full text link
    Loop interference (LI) in wireless communications, is a notion resulting from the full-duplex (FD) operation. In a large-scale network, FD also increases the multiuser interference due to the large number of active wireless links that exist. Hence, in order to realize the FD potentials, this interference needs to be restricted. This paper presents a stochastic geometry model of FD cellular networks where the users and base stations employ directional antennas. Based on previous experimental results, we model the passive suppression of the LI at each FD terminal as a function of the angle between the two antennas and show the significant gains that can be achieved by this method. Together with the reduction of multiuser interference resulting from antenna directionality, our model demonstrates that FD can potentially be implemented in large-scale directional networks.Comment: to appear in Proc. IEEE SPAWC 201
    • …
    corecore