13,394 research outputs found

    On the Statistical Modeling and Analysis of Repairable Systems

    Full text link
    We review basic modeling approaches for failure and maintenance data from repairable systems. In particular we consider imperfect repair models, defined in terms of virtual age processes, and the trend-renewal process which extends the nonhomogeneous Poisson process and the renewal process. In the case where several systems of the same kind are observed, we show how observed covariates and unobserved heterogeneity can be included in the models. We also consider various approaches to trend testing. Modern reliability data bases usually contain information on the type of failure, the type of maintenance and so forth in addition to the failure times themselves. Basing our work on recent literature we present a framework where the observed events are modeled as marked point processes, with marks labeling the types of events. Throughout the paper the emphasis is more on modeling than on statistical inference.Comment: Published at http://dx.doi.org/10.1214/088342306000000448 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Reliability Analysis And Optimal Maintenance Planning For Repairable Multi-Component Systems Subject To Dependent Competing Risks

    Get PDF
    Modern engineering systems generally consist of multiple components that interact in a complex manner. Reliability analysis of multi-component repairable systems plays a critical role for system safety and cost reduction. Establishing reliability models and scheduling optimal maintenance plans for multi-component repairable systems, however, is still a big challenge when considering the dependency of component failures. Existing models commonly make prior assumptions, without statistical verification, as to whether different component failures are independent or not. In this dissertation, data-driven systematic methodologies to characterize component failure dependency of complex systems are proposed. In CHAPTER 2, a parametric reliability model is proposed to capture the statistical dependency among different component failures under partially perfect repair assumption. Based on the proposed model, statistical hypothesis tests are developed to test the dependency of component failures. In CHAPTER 3, two reliability models for multi-component systems with dependent competing risks under imperfect assumptions are proposed, i.e., generalized dependent latent age model and copula-based trend-renewal process model. The generalized dependent latent age model generalizes the partially perfect repair model by involving the extended virtual age concept. And the copula-based trend renewal process model utilizes multiple trend functions to transform the failure times from original time domain to a transformed time domain, in which the repair conditions can be treated as partially perfect. Parameter estimation methods for both models are developed. In CHAPTER 4, based on the generalized dependent latent age model, two periodic inspection-based maintenance polices are developed for a multi-component repairable system subject to dependent competing risks. The first maintenance policy assumes all the components are restored to as good as new once a failure detected, i.e., the whole system is replaced. The second maintenance policy considers the partially perfect repair, i.e., only the failed component can be replaced after detection of failures. Both the maintenance policies are optimized with the aim to minimize the expected average maintenance cost per unit time. The developed methodologies are demonstrated by using applications of real engineering systems

    Reliability and Condition-Based Maintenance Analysis of Deteriorating Systems Subject to Generalized Mixed Shock Model

    Get PDF
    For successful commercialization of evolving devices (e.g., micro-electro-mechanical systems, and biomedical devices), there must be new research focusing on reliability models and analysis tools that can assist manufacturing and maintenance of these devices. These advanced systems may experience multiple failure processes that compete against each other. Two major failure processes are identified to be deteriorating or degradation processes (e.g., wear, fatigue, erosion, corrosion) and random shocks. When these failure processes are dependent, it is a challenging problem to predict reliability of complex systems. This research aims to develop reliability models by exploring new aspects of dependency between competing risks of degradation-based and shock-based failure considering a generalized mixed shock model, and to develop new and effective condition-based maintenance policies based on the developed reliability models. In this research, different aspects of dependency are explored to accurately estimate the reliability of complex systems. When the degradation rate is accelerated as a result of withstanding a particular shock pattern, we develop reliability models with a changing degradation rate for four different shock patterns. When the hard failure threshold reduces due to changes in degradation, we investigate reliability models considering the dependence of the hard failure threshold on the degradation level for two different scenarios. More generally, when the degradation rate and the hard failure threshold can simultaneously transition multiple times, we propose a rich reliability model for a new generalized mixed shock model that is a combination of extreme shock model, δ-shock model and run shock model. This general assumption reflects complex behaviors associated with modern systems and structures that experience multiple sources of external shocks. Based on the developed reliability models, we introduce new condition-based maintenance strategies by including various maintenance actions (e.g., corrective replacement, preventive replacement, and imperfect repair) to minimize the expected long-run average maintenance cost rate. The decisions for maintenance actions are made based on the health condition of systems that can be observed through periodic inspection. The reliability and maintenance models developed in this research can provide timely and effective tools for decision-makers in manufacturing to economically optimize operational decisions for improving reliability, quality and productivity.Industrial Engineering, Department o

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing

    An Integrated Optimization Framework for Multi-Component Predictive Analytics in Wind Farm Operations & Maintenance

    Get PDF
    Recent years have seen an unprecedented growth in the use of sensor data to guide wind farm operations and maintenance. Emerging sensor-driven approaches typically focus on optimal maintenance procedures for single turbine systems, or model multiple turbines in wind farms as single component entities. In reality, turbines are composed of multiple components that dynamically interact throughout their lifetime. These interactions are central for realistic assessment and control of turbine failure risks. In this paper, an integrated framework that combines i) real-time degradation models used for predicting remaining life distribution of each component, with ii) mixed integer optimization models and solution algorithms used for identifying optimal wind farm maintenance and operations is proposed. Maintenance decisions identify optimal times to repair every component, which in turn, determine the failure risk of the turbines. More specifically, optimization models that characterize a turbine's failure time as the first time that one of its constituent components fail - a systems reliability concept called competing risk is developed. The resulting turbine failures impact the optimization of wind farm operations and revenue. Extensive experiments conducted for multiple wind farms with 300 wind turbines - 1200 components - showcases the performance of the proposed framework over conventional methods

    Dynamic Reliability Models for Multiple Dependent Competing Degradation Processes

    No full text
    International audienceThis paper presents a holistic treatment to multiple dependent competing degradation processes, by employing the piecewise-deterministic Markov process (PDMP) modeling framework. The proposed method can handle the dependencies between physics-based models, between multi-state models and between these two types of models. A Monte Carlo simulation algorithm is developed to compute the components/systems reliability. A case study on one subsystem of the residual heat removal system (RHRS) of a nuclear power plant is illustrated
    • …
    corecore