327 research outputs found

    Data-driven Invariance for Reference Governors

    Full text link
    This paper presents a novel approach to synthesizing positive invariant sets for unmodeled nonlinear systems using direct data-driven techniques. The data-driven invariant sets are used to design a data-driven reference governor that selects a reference for the closed-loop system to enforce constraints. Using kernel-basis functions, we solve a semi-definite program to learn a sum-of-squares Lyapunov-like function whose unity level-set is a constraint admissible positive invariant set, which determines the constraint admissible states as well as reference inputs. Leveraging Lipschitz properties of the system, we prove that tightening the model-based design ensures robustness of the data-driven invariant set to the inherent plant uncertainty in a data-driven framework. To mitigate the curse-of-dimensionality, we repose the semi-definite program into a linear program. We validate our approach through two examples: First, we present an illustrative example where we can analytically compute the maximum positive invariant set and compare with the presented data-driven invariant set. Second, we present a practical autonomous driving scenario to demonstrate the utility of the presented method for nonlinear systems

    Reference Governors for Time-varying Systems and Constraints

    Get PDF
    Control systems are often subject to constraints imposed by physical limitations or safety considerations, and require means of constraint management to ensure the stability and safety of the system. For real-time implementation, constraint management schemes must not carry a heavy computational burden; however many of the current solutions are computationally unattractive, especially those with robust formulations. Thus, the design of constraint management schemes with low computational loads is an important and practical problem for control engineers. Reference Governor (RG) is an efficient constraint management scheme that is attractive for real-time implementation due to its low computational complexity and ease of implementation. However, in theory, RG is only able to enforce constant constraints for systems with time-invariant models. In this thesis, we extend the capabilities of RG to solve two separate problems. The solution to the first problem presented in this thesis is a novel RG scheme for overshoot mitigation in tracking control systems. The proposed scheme, referred to as the Reference Governor with Dynamic Constraint (RG-DC), recasts the overshoot mitigation problem as a constraint management problem. The outcome of this reformulation is a dynamic Maximal Admissible Set (MAS), which varies in real-time as a function of the reference signal and the tracking output. RG-DC employs the dynamic MAS to modify the reference signal to mitigate or, if possible, prevent overshoot. The second solution presented in this thesis is a RG scheme for constraint management of parameter-varying systems with slowly time-varying constraints. The solution, known as the Adaptive-Contractive Reference Governor (RG-AC) utilizes a contractive characterization of MAS that changes in real-time as a function of the system\u27s time-varying parameters in a computationally attractive manner. This adaptive set is based off a first-order Taylor approximation of the parameter dependent matrices that describe the time-varying MAS. The work in this thesis is supported by simulation results which demonstrate the efficacy of both approaches, and also highlight their limitations

    Reference Governors: From Theory to Practice

    Get PDF
    Control systems that are subject to constraints due to physical limitations, hardware protection, or safety considerations have led to challenging control problems that have piqued the interest of control practitioners and theoreticians for many decades. In general, the design of constraint management schemes must meet several stringent requirements, for example: low computational burden, performance, recovery mechanisms from infeasibility conditions, robustness, and formulation simplicity. These requirements have been particularly difficult to meet for the following three classes of systems: stochastic systems, linear systems driven by unmodeled disturbances, and nonlinear systems. Hence, in this work, we develop three constraint management schemes, based on Reference Governor (RG), for these classes of systems. The first scheme, which is referred to as Stochastic RG, leverages the ideas of chance constraints to construct a Stochastic Robustly Invariant Maximal Output Admissible set (SR-MAS) in order to enforce constraints on stochastic systems. The second scheme, which is called Recovery RG (RRG), addresses the problem of recovery from infeasibility conditions by implementing a disturbance observer to update the MAS, and hence recover from constraint violations due to unmodeled disturbances. The third method addresses the problem of constraint satisfaction on nonlinear systems by decomposing the design of the constraint management strategy into two parts: enforcement at steady-state, and during transient. The former is achieved by using the forward and inverse steady-state characterization of the nonlinear system. The latter is achieved by implementing an RG-based approach, which employs a novel Robust Output Admissible Set (ROAS) that is computed using data obtained from the nonlinear system. Added to this, this dissertation includes a detailed literature review of existing constraint management schemes to compare and highlight advantages and disadvantages between them. Finally, all this study is supported by a systematic analysis, as well as numerical and experimental validation of the closed-loop systems performance on vehicle roll-over avoidance, turbocharged engine control, and inverted pendulum control problems

    Developments in Stochastic Fuel Efficient Cruise Control and Constrained Control with Applications to Aircraft.

    Full text link
    This dissertation presents contributions to fuel-efficient control of vehicle speed and constrained control with applications to aircraft. In the first part of this dissertation a stochastic approach to fuel-efficient vehicle speed control is developed. This approach encompasses stochastic modeling of road grade and traffic speed and uses the application of stochastic dynamic programming to generate vehicle speed control policies that are optimized for the trade-off between fuel consumption and travel time. It is shown that the policies lead to the emergence of time-varying vehicle speed patterns, often referred to as pulse and glide (PnG). Through simulations and experiments it is confirmed that these time-varying vehicle speed profiles are more fuel-efficient than driving at a comparable constant speed. A practical implementation strategy of these patterns is then developed and demonstrated. Also, several additional contributions are made to approaches for stochastic modeling of road grade and vehicle speed that include the use of Kullback-Liebler divergence and divergence rate and a stochastic jump-like model for the behavior of the road grade. In the second part of the dissertation, contributions to constrained control with applications to aircraft are described. Recoverable sets and integral safe sets of initial states of constrained closed-loop systems are introduced first and computational procedures of such sets based on linear discrete-time models are given. An approach to constrained flight planning based on chaining recoverable sets or integral safe sets is described and illustrated with a simulation example. Finally, two control schemes that exploit integral safe sets are proposed. The first scheme, referred to as the controller state governor (CSG), resets the controller state (typically an integrator) to enforce the constraints and enlarge the set of plant states that can be recovered without constraint violation. The second scheme, referred to as the controller state and reference governor (CSRG), combines the controller state governor with the reference governor control architecture and provides the capability of simultaneously modifying the reference command and the controller state to enforce the constraints. Theoretical results that characterize the response properties of both schemes are presented. Examples are reported that illustrate the operation of these schemes.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111399/1/kevinmcd_1.pd

    Reference Governors for MIMO Systems and Preview Control: Theory, Algorithms, and Practical Applications

    Get PDF
    The Reference Governor (RG) is a methodology based on predictive control for constraint management of pre-stablized closed-loop systems. This problem is motivated by the fact that control systems are usually subject to physical restrictions, hardware protection, and safety and efficiency considerations. The goal of RG is to optimize the tracking performance while ensuring that the constraints are satisfied. Due to structural limitations of RG, however, these requirements are difficult to meet for Multi-Input Multi-Output (MIMO) systems or systems with preview information. Hence, in this dissertation, three extensions of RG for constraint management of these classes of systems are developed. The first approach aims to solve constraint management problem for linear MIMO systems based on decoupling the input-output dynamics, followed by the deployment of a bank of RGs for each decoupled channel, namely Decoupled Reference Governor (DRG). This idea was originally developed in my previous work based on transfer function decoupling, namely DRG-tf. This dissertation improves the design of DRG-tf, analyzes the transient performance of DRG-tf, and extends the DRG formula to state space representations. The second scheme, which is called Preview Reference Governor, extends the applicability of RG to systems incorporated with the preview information of the reference and disturbance signals. The third subject focuses on enforcing constraints on nonlinear MIMO systems. To achieve this goal, three different methods are established. In the first approach, which is referred to as the Nonlinear Decoupled Reference Governor (NL-DRG), instead of employing the Maximal Admissible set and using the decoupling methods as the DRG does, numerical simulations are used to compute the constraint-admissible setpoints. Given the extensive numerical simulations required to implement NL-DRG, the second approach, namely Modified RG (M-RG), is proposed to reduce the computational burden of NL-DRG. This solution consists of the sequential application of different RGs based on linear prediction models, each robustified to account for the worst-case linearization error as well as coupling behavior. Due to this robustification, however, M-RG may lead to a conservative response. To lower the computation time of NL-DRG while improving the performance of M-RG, the third approach, which is referred to as Neural Network DRG (NN-DRG), is proposed. The main idea behinds NN-DRG is to approximate the input-output mapping of NL-DRG with a well-trained NN model. Afterwards, a Quadratic Program is solved to augment the results of NN such that the constraints are satisfied at the next timestep. Additionally, motivated by the broad utilization of quadcopter drones and the necessity to impose constraints on the angles and angle rates of drones, the simulation and experimental results of the proposed nonlinear RG-based methods on a real quadcopter are demonstrated
    • …
    corecore