767 research outputs found

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Towards robots reasoning about group behavior of museum visitors: leader detection and group tracking

    Get PDF
    The final publication is available at IOS Press through http://dx.doi.org/10.3233/AIS-170467Peer ReviewedPostprint (author's final draft

    Anthropomorphic Robot Design and User Interaction Associated with Motion

    Get PDF
    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over robot limbs and body positions, 2) improve users ability to detect anomalous robot behavior which could signal malfunction, and 3) enable users to be better able to infer the intent of robot movement. These three benefits of anthropomorphic design are inherent implications of the anthropomorphic form but they need to be recognized by designers as part of anthropomorphic design and explicitly enhanced to maximize their beneficial impact. Examples of such enhancements are provided in this report. If implemented, these benefits of anthropomorphic design can help reduce the risk of Inadequate Design of Human and Automation Robotic Integration (HARI) associated with the HARI-01 gap by providing efficient and dexterous operator control over robots and by improving operator ability to detect malfunctions and understand the intention of robot movement

    Proceedings of the first workshop on Peripheral Machine Interfaces: going beyond traditional surface electromyography

    Get PDF
    abstract: One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic devices. Despite decades of research, the state of the art is dramatically behind the expectations. To shed light on this issue, in June, 2013 the first international workshop on Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces (MI; PMI) was convened, hosted by the International Conference on Rehabilitation Robotics. The keyword PMI has been selected to denote human–machine interfaces targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered from the PNS in a non-invasive way, that is, from the surface of the residuum. The workshop was intended to provide an overview of the state of the art and future perspectives of such interfaces; this paper represents is a collection of opinions expressed by each and every researcher/group involved in it

    Autonomous Applied Robotics: Ultrasound-Based Robot-Assisted Needle Insertion System Concept and Development

    Get PDF
    Ultrasound (US) is a popular imaging modality for image-guided minimally invasive surgery (MIS), enabling the faster and more reliable execution of numerous procedures, such as biopsy, electrode placement and vessel cannulation. Blood vessel cannulation is a common, routine intervention, e.g., for blood oxygen level testing. Yet, in particular cases, when the vessel is located deep or veins less stable (with the loss of subcutaneous tissue), it is hard to complete it without US assistance. In this paper, we present a solution for US-guided, robot-assisted needle insertion for vein cannulation. We developed an image-guided system to aid needle insertion via active targeting and anatomy-relevant positioning, together with safeguarding features, such as a kinematically enforced Remote Center of Motion (RCM) mechanism. The proposed system comprises a portable US transducer mounted on a KUKA iiwa collaborative robot, a custom designed needle insertion mechanism with adjacent controllers. The US and needle insertion mechanism are attached to the robot through a 3D printed custom designed mounting part with integrated force sensor. The robot arm is responsible for moving the needle to target position with impedance control. The needle insertion mechanism allows the manipulation of the needle along 3 axes. The mechanism was designed for near-surface vein cannulation with an RCM kinematic structure to avoid damage to the vein. The developed system was tested with different types of gelatin phantoms. Vein deformation and tissue motion was examined during US imaging. The control loop of our system is supplemented with vein deformation tissue model and US-based visual servoing

    Combining Psychological and Engineering Approaches to Utilizing Social Robots with Children with Autism

    Get PDF
    Abstract-It is estimated that Autism Spectrum Disorder (ASD) affects 1 in 68 children
    • …
    corecore