78 research outputs found

    Interactive Visualization on High-Resolution Tiled Display Walls with Network Accessible Compute- and Display-Resources

    Get PDF
    Papers number 2-7 and appendix B and C of this thesis are not available in Munin: 2. Hagen, T-M.S., Johnsen, E.S., StĂždle, D., Bjorndalen, J.M. and Anshus, O.: 'Liberating the Desktop', First International Conference on Advances in Computer-Human Interaction (2008), pp 89-94. Available at http://dx.doi.org/10.1109/ACHI.2008.20 3. Tor-Magne Stien Hagen, Oleg Jakobsen, Phuong Hoai Ha, and Otto J. Anshus: 'Comparing the Performance of Multiple Single-Cores versus a Single Multi-Core' (manuscript)4. Tor-Magne Stien Hagen, Phuong Hoai Ha, and Otto J. Anshus: 'Experimental Fault-Tolerant Synchronization for Reliable Computation on Graphics Processors' (manuscript) 5. Tor-Magne Stien Hagen, Daniel StĂždle and Otto J. Anshus: 'On-Demand High-Performance Visualization of Spatial Data on High-Resolution Tiled Display Walls', Proceedings of the International Conference on Imaging Theory and Applications and International Conference on Information Visualization Theory and Applications (2010), pages 112-119. Available at http://dx.doi.org/10.5220/0002849601120119 6. BĂ„rd Fjukstad, Tor-Magne Stien Hagen, Daniel StĂždle, Phuong Hoai Ha, John Markus BjĂžrndalen and Otto Anshus: 'Interactive Weather Simulation and Visualization on a Display Wall with Many-Core Compute Nodes', Para 2010 – State of the Art in Scientific and Parallel Computing. Available at http://vefir.hi.is/para10/extab/para10-paper-60 7. Tor-Magne Stien Hagen, Daniel StĂždle, John Markus BjĂžrndalen, and Otto Anshus: 'A Step towards Making Local and Remote Desktop Applications Interoperable with High-Resolution Tiled Display Walls', Lecture Notes in Computer Science (2011), Volume 6723/2011, 194-207. Available at http://dx.doi.org/10.1007/978-3-642-21387-8_15The vast volume of scientific data produced today requires tools that can enable scientists to explore large amounts of data to extract meaningful information. One such tool is interactive visualization. The amount of data that can be simultaneously visualized on a computer display is proportional to the display’s resolution. While computer systems in general have seen a remarkable increase in performance the last decades, display resolution has not evolved at the same rate. Increased resolution can be provided by tiling several displays in a grid. A system comprised of multiple displays tiled in such a grid is referred to as a display wall. Display walls provide orders of magnitude more resolution than typical desktop displays, and can provide insight into problems not possible to visualize on desktop displays. However, their distributed and parallel architecture creates several challenges for designing systems that can support interactive visualization. One challenge is compatibility issues with existing software designed for personal desktop computers. Another set of challenges include identifying characteristics of visualization systems that can: (i) Maintain synchronous state and display-output when executed over multiple display nodes; (ii) scale to multiple display nodes without being limited by shared interconnect bottlenecks; (iii) utilize additional computational resources such as desktop computers, clusters and supercomputers for workload distribution; and (iv) use data from local and remote compute- and data-resources with interactive performance. This dissertation presents Network Accessible Compute (NAC) resources and Network Accessible Display (NAD) resources for interactive visualization of data on displays ranging from laptops to high-resolution tiled display walls. A NAD is a display having functionality that enables usage over a network connection. A NAC is a computational resource that can produce content for network accessible displays. A system consisting of NACs and NADs is either push-based (NACs provide NADs with content) or pull-based (NADs request content from NACs). To attack the compatibility challenge, a push-based system was developed. The system enables several simultaneous users to mirror multiple regions from the desktop of their computers (NACs) onto nearby NADs (among others a 22 megapixel display wall) without requiring usage of separate DVI/VGA cables, permanent installation of third party software or opening firewall ports. The system has lower performance than that of a DVI/VGA cable approach, but increases flexibility such as the possibility to share network accessible displays from multiple computers. At a resolution of 800 by 600 pixels, the system can mirror dynamic content between a NAC and a NAD at 38.6 frames per second (FPS). At 1600x1200 pixels, the refresh rate is 12.85 FPS. The bottleneck of the system is frame buffer capturing and encoding/decoding of pixels. These two functional parts are executed in sequence, limiting the usage of additional CPU cores. By pipelining and executing these parts on separate CPU cores, higher frame rates can be expected and by a factor of two in the best case. To attack all presented challenges, a pull-based system, WallScope, was developed. WallScope enables interactive visualization of local and remote data sets on high-resolution tiled display walls. The WallScope architecture comprises a compute-side and a display-side. The compute-side comprises a set of static and dynamic NACs. Static NACs are considered permanent to the system once added. This type of NAC typically has strict underlying security and access policies. Examples of such NACs are clusters, grids and supercomputers. Dynamic NACs are compute resources that can register on-the-fly to become compute nodes in the system. Examples of this type of NAC are laptops and desktop computers. The display-side comprises of a set of NADs and a data set containing data customized for the particular application domain of the NADs. NADs are based on a sort-first rendering approach where a visualization client is executed on each display-node. The state of these visualization clients is provided by a separate state server, enabling central control of load and refresh-rate. Based on the state received from the state server, the visualization clients request content from the data set. The data set is live in that it translates these requests into compute messages and forwards them to available NACs. Results of the computations are returned to the NADs for the final rendering. The live data set is close to the NADs, both in terms of bandwidth and latency, to enable interactive visualization. WallScope can visualize the Earth, gigapixel images, and other data available through the live data set. When visualizing the Earth on a 28-node display wall by combining the Blue Marble data set with the Landsat data set using a set of static NACs, the bottleneck of WallScope is the computation involved in combining the data sets. However, the time used to combine data sets on the NACs decreases by a factor of 23 when going from 1 to 26 compute nodes. The display-side can decode 414.2 megapixels of images per second (19 frames per second) when visualizing the Earth. The decoding process is multi-threaded and higher frame rates are expected using multi-core CPUs. WallScope can rasterize a 350-page PDF document into 550 megapixels of image-tiles and display these image-tiles on a 28-node display wall in 74.66 seconds (PNG) and 20.66 seconds (JPG) using a single quad-core desktop computer as a dynamic NAC. This time is reduced to 4.20 seconds (PNG) and 2.40 seconds (JPG) using 28 quad-core NACs. This shows that the application output from personal desktop computers can be decoupled from the resolution of the local desktop and display for usage on high-resolution tiled display walls. It also shows that the performance can be increased by adding computational resources giving a resulting speedup of 17.77 (PNG) and 8.59 (JPG) using 28 compute nodes. Three principles are formulated based on the concepts and systems researched and developed: (i) Establishing the end-to-end principle through customization, is a principle stating that the setup and interaction between a display-side and a compute-side in a visualization context can be performed by customizing one or both sides; (ii) Personal Computer (PC) – Personal Compute Resource (PCR) duality states that a user’s computer is both a PC and a PCR, implying that desktop applications can be utilized locally using attached interaction devices and display(s), or remotely by other visualization systems for domain specific production of data based on a user’s personal desktop install; and (iii) domain specific best-effort synchronization stating that for distributed visualization systems running on tiled display walls, state handling can be performed using a best-effort synchronization approach, where visualization clients eventually will get the correct state after a given period of time. Compared to state-of-the-art systems presented in the literature, the contributions of this dissertation enable utilization of a broader range of compute resources from a display wall, while at the same time providing better control over where to provide functionality and where to distribute workload between compute-nodes and display-nodes in a visualization context

    3D Spatial Data Infrastructures for web-based Visualization

    Get PDF
    In this thesis, concepts for developing Spatial Data Infrastructures with an emphasis on visualizing 3D landscape and city models in distributed environments are discussed. Spatial Data Infrastructures are important for public authorities in order to perform tasks on a daily basis, and serve as research topic in geo-informatics. Joint initiatives at national and international level exist for harmonizing procedures and technologies. Interoperability is an important aspect in this context - as enabling technology for sharing, distributing, and connecting geospatial data and services. The Open Geospatial Consortium is the main driver for developing international standards in this sector and includes government agencies, universities and private companies in a consensus process. 3D city models are becoming increasingly popular not only in desktop Virtual Reality applications but also for being used in professional purposes by public authorities. Spatial Data Infrastructures focus so far on the storage and exchange of 3D building and elevation data. For efficient streaming and visualization of spatial 3D data in distributed network environments such as the internet, concepts from the area of real time 3D Computer Graphics must be applied and combined with Geographic Information Systems (GIS). For example, scene graph data structures are commonly used for creating complex and dynamic 3D environments for computer games and Virtual Reality applications, but have not been introduced in GIS so far. In this thesis, several aspects of how to create interoperable and service-based environments for 3D spatial data are addressed. These aspects are covered by publications in journals and conference proceedings. The introductory chapter provides a logic succession from geometrical operations for processing raw data, to data integration patterns, to system designs of single components, to service interface descriptions and workflows, and finally to an architecture of a complete distributed service network. Digital Elevation Models are very important in 3D geo-visualization systems. Data structures, methods and processes are described for making them available in service based infrastructures. A specific mesh reduction method is used for generating lower levels of detail from very large point data sets. An integration technique is presented that allows the combination with 2D GIS data such as roads and land use areas. This approach allows using another optimization technique that greatly improves the usability for immersive 3D applications such as pedestrian navigation: flattening road and water surfaces. It is a geometric operation, which uses data structures and algorithms found in numerical simulation software implementing Finite Element Methods. 3D Routing is presented as a typical application scenario for detailed 3D city models. Specific problems such as bridges, overpasses and multilevel networks are addressed and possible solutions described. The integration of routing capabilities in service infrastructures can be accomplished with standards of the Open Geospatial Consortium. An additional service is described for creating 3D networks and for generating 3D routes on the fly. Visualization of indoor routes requires different representation techniques. As server interface for providing access to all 3D data, the Web 3D Service has been used and further developed. Integrating and handling scene graph data is described in order to create rich virtual environments. Coordinate transformations of scene graphs are described in detail, which is an important aspect for ensuring interoperability between systems using different spatial reference systems. The Web 3D Service plays a central part in nearly all experiments that have been carried out. It does not only provide the means for interactive web-visualizations, but also for performing further analyses, accessing detailed feature information, and for automatic content discovery. OpenStreetMap and other worldwide available datasets are used for developing a complete architecture demonstrating the scalability of 3D Spatial Data Infrastructures. Its suitability for creating 3D city models is analyzed, according to requirements set by international standards. A full virtual globe system has been developed based on OpenStreetMap including data processing, database storage, web streaming and a visualization client. Results are discussed and compared to similar approaches within geo-informatics research, clarifying in which application scenarios and under which requirements the approaches in this thesis can be applied

    Interacting with scientific workflows

    Get PDF

    Web-based Stereoscopic Collaboration for Medical Visualization

    Get PDF
    Medizinische Volumenvisualisierung ist ein wertvolles Werkzeug zur Betrachtung von Volumen- daten in der medizinischen Praxis und Lehre. Eine interaktive, stereoskopische und kollaborative Darstellung in Echtzeit ist notwendig, um die Daten vollständig und im Detail verstehen zu können. Solche Visualisierung von hochauflösenden Daten ist jedoch wegen hoher Hardware- Anforderungen fast nur an speziellen Visualisierungssystemen möglich. Remote-Visualisierung wird verwendet, um solche Visualisierung peripher nutzen zu können. Dies benötigt jedoch fast immer komplexe Software-Deployments, wodurch eine universelle ad-hoc Nutzbarkeit erschwert wird. Aus diesem Sachverhalt ergibt sich folgende Hypothese: Ein hoch performantes Remote- Visualisierungssystem, welches für Stereoskopie und einfache Benutzbarkeit spezialisiert ist, kann für interaktive, stereoskopische und kollaborative medizinische Volumenvisualisierung genutzt werden. Die neueste Literatur über Remote-Visualisierung beschreibt Anwendungen, welche nur reine Webbrowser benötigen. Allerdings wird bei diesen kein besonderer Schwerpunkt auf die perfor- mante Nutzbarkeit von jedem Teilnehmer gesetzt, noch die notwendige Funktion bereitgestellt, um mehrere stereoskopische Präsentationssysteme zu bedienen. Durch die Bekanntheit von Web- browsern, deren einfach Nutzbarkeit und weite Verbreitung hat sich folgende spezifische Frage ergeben: Können wir ein System entwickeln, welches alle Aspekte unterstützt, aber nur einen reinen Webbrowser ohne zusätzliche Software als Client benötigt? Ein Proof of Concept wurde durchgeführt um die Hypothese zu verifizieren. Dazu gehörte eine Prototyp-Entwicklung, deren praktische Anwendung, deren Performanzmessung und -vergleich. Der resultierende Prototyp (CoWebViz) ist eines der ersten Webbrowser basierten Systeme, welches flüssige und interaktive Remote-Visualisierung in Realzeit und ohne zusätzliche Soft- ware ermöglicht. Tests und Vergleiche zeigen, dass der Ansatz eine bessere Performanz hat als andere ähnliche getestete Systeme. Die simultane Nutzung verschiedener stereoskopischer Präsen- tationssysteme mit so einem einfachen Remote-Visualisierungssystem ist zur Zeit einzigartig. Die Nutzung für die normalerweise sehr ressourcen-intensive stereoskopische und kollaborative Anatomieausbildung, gemeinsam mit interkontinentalen Teilnehmern, zeigt die Machbarkeit und den vereinfachenden Charakter des Ansatzes. Die Machbarkeit des Ansatzes wurde auch durch die erfolgreiche Nutzung für andere Anwendungsfälle gezeigt, wie z.B. im Grid-computing und in der Chirurgie

    Fachlich erweiterbare 3D-Stadtmodelle – Management, Visualisierung und Interaktion

    Get PDF
    Domain-extendable semantic 3D city models are complex mappings and inventories of the urban environment which can be utilized as an integrative information backbone to facilitate a range of application fields like urban planning, environmental simulations, disaster management, and energy assessment. Today, more and more countries and cities worldwide are creating their own 3D city models based on the CityGML specification which is an international standard issued by the Open Geospatial Consortium (OGC) to provide an open data model and XML-based format for describing the relevant urban objects with regards to their 3D geometry, topology, semantics, and appearance. It especially provides a flexible and systematic extension mechanism called “Application Domain Extension (ADE)” which allows third parties to dynamically extend the existing CityGML definitions with additional information models from different application domains for representing the extended or newly introduced geographic object types within a common framework. However, due to the consequent large size and high model complexity, the practical utilization of country-wide CityGML datasets has posed a tremendous challenge regarding the setup of an extensive application system to support the efficient data storage, analysis, management, interaction, and visualization. These requirements have been partly solved by the existing free 3D geo-database solution called ‘3D City Database (3DCityDB)’ which offers a rich set of functionalities for dealing with standard CityGML data models, but lacked the support for CityGML ADEs. The key motivation of this thesis is to develop a reliable approach for extending the existing database solution to support the efficient management, visualization, and interaction of large geospatial data elements of arbitrary CityGML ADEs. Emphasis is first placed on answering the question of how to dynamically extend the relational database schema by parsing and interpreting the XML schema files of the ADE and dynamically create new database tables accordingly. Based on a comprehensive survey of the related work, a new graph-based framework has been proposed which uses typed and attributed graphs for semantically representing the object-oriented data models of CityGML ADEs and utilizes graph transformation systems to automatically generate compact table structures extending the 3DCityDB. The transformation process is performed by applying a series of fine-grained graph transformation rules which allow users to declaratively describe the complex mapping rules including the optimization concepts that are employed in the development of the 3DCityDB database schema. The second major contribution of this thesis is the development of a new multi-level system which can serve as a complete and integrative platform for facilitating the various analysis, simulation, and modification operations on the complex-structured 3D city models based on CityGML and 3DCityDB. It introduces an additional application level based on a so-called ‘app-concept’ that allows for constructing a light-weight web application to reach a good balance between the high data model complexity and the specific application requirements of the end users. Each application can be easily built on top of a developed 3D web client whose functionalities go beyond the efficient 3D geo-visualization and interactive exploration, and also allows for performing collaborative modifications and analysis of 3D city models by taking advantage of the Cloud Computing technology. This multi-level system along with the extended 3DCityDB have been successfully utilized and evaluated by many practical projects.Fachlich erweiterbare semantische 3D-Stadtmodelle sind komplexe Abbildungen und DatenbestĂ€nde der stĂ€dtischen Umgebung, die als ein integratives InformationsrĂŒckgrat genutzt werden können, um eine Reihe von Anwendungsfeldern wie z. B. Stadtplanung, Umweltsimulationen, Katastrophenmanagement und Energiebewertung zu ermöglichen. Heute schaffen immer mehr LĂ€nder und StĂ€dte weltweit ihre eigenen 3D-Stadtmodelle auf Basis des internationalen Standards CityGML des Open Geospatial Consortium (OGC), um ein offenes Datenmodell und ein XML-basiertes Format zur Beschreibung der relevanten Stadtobjekte in Bezug auf ihre 3D-Geometrien, Topologien, Semantik und Erscheinungen zur VerfĂŒgung zu stellen. Es bietet insbesondere einen flexiblen und systematischen Erweiterungsmechanismus namens „Application Domain Extension“ (ADE), der es Dritten ermöglicht, die bestehenden CityGML-Definitionen mit zusĂ€tzlichen Informationsmodellen aus verschiedenen AnwendungsdomĂ€nen dynamisch zu erweitern, um die erweiterten oder neu eingefĂŒhrten Stadtobjekt-Typen innerhalb eines gemeinsamen Framework zu reprĂ€sentieren. Aufgrund der konsequent großen Datenmenge und hohen ModellkomplexitĂ€t bei der praktischen Nutzung der landesweiten CityGML-DatensĂ€tze wurden jedoch enorme Anforderungen an den Aufbau eines umfangreichen Anwendungssystems zur UnterstĂŒtzung der effizienten Speicherung, Analyse, Verwaltung, Interaktion und Visualisierung der Daten gestellt. Die bestehende kostenlose 3D-Geodatenbank-Lösung „3D City Database“ (3DCityDB) entsprach bereits teilweise diesen Anforderungen, indem sie zwar eine umfangreiche FunktionalitĂ€t fĂŒr den Umgang mit den Standard-CityGML-Datenmodellen, jedoch keine UnterstĂŒtzung fĂŒr CityGML-ADEs bietet. Die SchlĂŒsselmotivation fĂŒr diese Arbeit ist es, einen zuverlĂ€ssigen Ansatz zur Erweiterung der bestehenden Datenbanklösung zu entwickeln, um das effiziente Management, die Visualisierung und Interaktion großer DatensĂ€tze beliebiger CityGML-ADEs zu unterstĂŒtzen. Der Schwerpunkt liegt zunĂ€chst auf der Beantwortung der SchlĂŒsselfrage, wie man das relationale Datenbankschema dynamisch erweitern kann, indem die XML-Schemadateien der ADE analysiert und interpretiert und anschließend dem entsprechende neue Datenbanktabellen erzeugt werden. Auf Grundlage einer umfassenden Studie verwandter Arbeiten wurde ein neues graphbasiertes Framework entwickelt, das die typisierten und attributierten Graphen zur semantischen Darstellung der objektorientierten Datenmodelle von CityGML-ADEs verwendet und anschließend Graphersetzungssysteme nutzt, um eine kompakte Tabellenstruktur zur Erweiterung der 3DCityDB zu generieren. Der Transformationsprozess wird durch die Anwendung einer Reihe feingranularer Graphersetzungsregeln durchgefĂŒhrt, die es Benutzern ermöglicht, die komplexen Mapping-Regeln einschließlich der Optimierungskonzepte aus der Entwicklung des 3DCityDB-Datenbankschemas deklarativ zu formalisieren. Der zweite wesentliche Beitrag dieser Arbeit ist die Entwicklung eines neuen mehrstufigen Systemkonzepts, das auf CityGML und 3DCityDB basiert und gleichzeitig als eine komplette und integrative Plattform zur Erleichterung der Analyse, Simulationen und Modifikationen der komplex strukturierten 3D-Stadtmodelle dienen kann. Das Systemkonzept enthĂ€lt eine zusĂ€tzliche Anwendungsebene, die auf einem sogenannten „App-Konzept“ basiert, das es ermöglicht, eine leichtgewichtige Applikation bereitzustellen, die eine gute Balance zwischen der hohen ModellkomplexitĂ€t und den spezifischen Anwendungsanforderungen der Endbenutzer erreicht. Jede Applikation lĂ€sst sich ganz einfach mittels eines bereits entwickelten 3D-Webclients aufbauen, dessen FunktionalitĂ€ten ĂŒber die effiziente 3D-Geo-Visualisierung und interaktive Exploration hinausgehen und auch die DurchfĂŒhrung kollaborativer Modifikationen und Analysen von 3D-Stadtmodellen mit Hilfe von der Cloud-Computing-Technologie ermöglichen. Dieses mehrstufige System zusammen mit dem erweiterten 3DCityDB wurde erfolgreich in vielen praktischen Projekten genutzt und bewertet

    Fachlich erweiterbare 3D-Stadtmodelle – Management, Visualisierung und Interaktion

    Get PDF
    Domain-extendable semantic 3D city models are complex mappings and inventories of the urban environment which can be utilized as an integrative information backbone to facilitate a range of application fields like urban planning, environmental simulations, disaster management, and energy assessment. Today, more and more countries and cities worldwide are creating their own 3D city models based on the CityGML specification which is an international standard issued by the Open Geospatial Consortium (OGC) to provide an open data model and XML-based format for describing the relevant urban objects with regards to their 3D geometry, topology, semantics, and appearance. It especially provides a flexible and systematic extension mechanism called “Application Domain Extension (ADE)” which allows third parties to dynamically extend the existing CityGML definitions with additional information models from different application domains for representing the extended or newly introduced geographic object types within a common framework. However, due to the consequent large size and high model complexity, the practical utilization of country-wide CityGML datasets has posed a tremendous challenge regarding the setup of an extensive application system to support the efficient data storage, analysis, management, interaction, and visualization. These requirements have been partly solved by the existing free 3D geo-database solution called ‘3D City Database (3DCityDB)’ which offers a rich set of functionalities for dealing with standard CityGML data models, but lacked the support for CityGML ADEs. The key motivation of this thesis is to develop a reliable approach for extending the existing database solution to support the efficient management, visualization, and interaction of large geospatial data elements of arbitrary CityGML ADEs. Emphasis is first placed on answering the question of how to dynamically extend the relational database schema by parsing and interpreting the XML schema files of the ADE and dynamically create new database tables accordingly. Based on a comprehensive survey of the related work, a new graph-based framework has been proposed which uses typed and attributed graphs for semantically representing the object-oriented data models of CityGML ADEs and utilizes graph transformation systems to automatically generate compact table structures extending the 3DCityDB. The transformation process is performed by applying a series of fine-grained graph transformation rules which allow users to declaratively describe the complex mapping rules including the optimization concepts that are employed in the development of the 3DCityDB database schema. The second major contribution of this thesis is the development of a new multi-level system which can serve as a complete and integrative platform for facilitating the various analysis, simulation, and modification operations on the complex-structured 3D city models based on CityGML and 3DCityDB. It introduces an additional application level based on a so-called ‘app-concept’ that allows for constructing a light-weight web application to reach a good balance between the high data model complexity and the specific application requirements of the end users. Each application can be easily built on top of a developed 3D web client whose functionalities go beyond the efficient 3D geo-visualization and interactive exploration, and also allows for performing collaborative modifications and analysis of 3D city models by taking advantage of the Cloud Computing technology. This multi-level system along with the extended 3DCityDB have been successfully utilized and evaluated by many practical projects.Fachlich erweiterbare semantische 3D-Stadtmodelle sind komplexe Abbildungen und DatenbestĂ€nde der stĂ€dtischen Umgebung, die als ein integratives InformationsrĂŒckgrat genutzt werden können, um eine Reihe von Anwendungsfeldern wie z. B. Stadtplanung, Umweltsimulationen, Katastrophenmanagement und Energiebewertung zu ermöglichen. Heute schaffen immer mehr LĂ€nder und StĂ€dte weltweit ihre eigenen 3D-Stadtmodelle auf Basis des internationalen Standards CityGML des Open Geospatial Consortium (OGC), um ein offenes Datenmodell und ein XML-basiertes Format zur Beschreibung der relevanten Stadtobjekte in Bezug auf ihre 3D-Geometrien, Topologien, Semantik und Erscheinungen zur VerfĂŒgung zu stellen. Es bietet insbesondere einen flexiblen und systematischen Erweiterungsmechanismus namens „Application Domain Extension“ (ADE), der es Dritten ermöglicht, die bestehenden CityGML-Definitionen mit zusĂ€tzlichen Informationsmodellen aus verschiedenen AnwendungsdomĂ€nen dynamisch zu erweitern, um die erweiterten oder neu eingefĂŒhrten Stadtobjekt-Typen innerhalb eines gemeinsamen Framework zu reprĂ€sentieren. Aufgrund der konsequent großen Datenmenge und hohen ModellkomplexitĂ€t bei der praktischen Nutzung der landesweiten CityGML-DatensĂ€tze wurden jedoch enorme Anforderungen an den Aufbau eines umfangreichen Anwendungssystems zur UnterstĂŒtzung der effizienten Speicherung, Analyse, Verwaltung, Interaktion und Visualisierung der Daten gestellt. Die bestehende kostenlose 3D-Geodatenbank-Lösung „3D City Database“ (3DCityDB) entsprach bereits teilweise diesen Anforderungen, indem sie zwar eine umfangreiche FunktionalitĂ€t fĂŒr den Umgang mit den Standard-CityGML-Datenmodellen, jedoch keine UnterstĂŒtzung fĂŒr CityGML-ADEs bietet. Die SchlĂŒsselmotivation fĂŒr diese Arbeit ist es, einen zuverlĂ€ssigen Ansatz zur Erweiterung der bestehenden Datenbanklösung zu entwickeln, um das effiziente Management, die Visualisierung und Interaktion großer DatensĂ€tze beliebiger CityGML-ADEs zu unterstĂŒtzen. Der Schwerpunkt liegt zunĂ€chst auf der Beantwortung der SchlĂŒsselfrage, wie man das relationale Datenbankschema dynamisch erweitern kann, indem die XML-Schemadateien der ADE analysiert und interpretiert und anschließend dem entsprechende neue Datenbanktabellen erzeugt werden. Auf Grundlage einer umfassenden Studie verwandter Arbeiten wurde ein neues graphbasiertes Framework entwickelt, das die typisierten und attributierten Graphen zur semantischen Darstellung der objektorientierten Datenmodelle von CityGML-ADEs verwendet und anschließend Graphersetzungssysteme nutzt, um eine kompakte Tabellenstruktur zur Erweiterung der 3DCityDB zu generieren. Der Transformationsprozess wird durch die Anwendung einer Reihe feingranularer Graphersetzungsregeln durchgefĂŒhrt, die es Benutzern ermöglicht, die komplexen Mapping-Regeln einschließlich der Optimierungskonzepte aus der Entwicklung des 3DCityDB-Datenbankschemas deklarativ zu formalisieren. Der zweite wesentliche Beitrag dieser Arbeit ist die Entwicklung eines neuen mehrstufigen Systemkonzepts, das auf CityGML und 3DCityDB basiert und gleichzeitig als eine komplette und integrative Plattform zur Erleichterung der Analyse, Simulationen und Modifikationen der komplex strukturierten 3D-Stadtmodelle dienen kann. Das Systemkonzept enthĂ€lt eine zusĂ€tzliche Anwendungsebene, die auf einem sogenannten „App-Konzept“ basiert, das es ermöglicht, eine leichtgewichtige Applikation bereitzustellen, die eine gute Balance zwischen der hohen ModellkomplexitĂ€t und den spezifischen Anwendungsanforderungen der Endbenutzer erreicht. Jede Applikation lĂ€sst sich ganz einfach mittels eines bereits entwickelten 3D-Webclients aufbauen, dessen FunktionalitĂ€ten ĂŒber die effiziente 3D-Geo-Visualisierung und interaktive Exploration hinausgehen und auch die DurchfĂŒhrung kollaborativer Modifikationen und Analysen von 3D-Stadtmodellen mit Hilfe von der Cloud-Computing-Technologie ermöglichen. Dieses mehrstufige System zusammen mit dem erweiterten 3DCityDB wurde erfolgreich in vielen praktischen Projekten genutzt und bewertet

    Architectures for ubiquitous 3D on heterogeneous computing platforms

    Get PDF
    Today, a wide scope for 3D graphics applications exists, including domains such as scientific visualization, 3D-enabled web pages, and entertainment. At the same time, the devices and platforms that run and display the applications are more heterogeneous than ever. Display environments range from mobile devices to desktop systems and ultimately to distributed displays that facilitate collaborative interaction. While the capability of the client devices may vary considerably, the visualization experiences running on them should be consistent. The field of application should dictate how and on what devices users access the application, not the technical requirements to realize the 3D output. The goal of this thesis is to examine the diverse challenges involved in providing consistent and scalable visualization experiences to heterogeneous computing platforms and display setups. While we could not address the myriad of possible use cases, we developed a comprehensive set of rendering architectures in the major domains of scientific and medical visualization, web-based 3D applications, and movie virtual production. To provide the required service quality, performance, and scalability for different client devices and displays, our architectures focus on the efficient utilization and combination of the available client, server, and network resources. We present innovative solutions that incorporate methods for hybrid and distributed rendering as well as means to manage data sets and stream rendering results. We establish the browser as a promising platform for accessible and portable visualization services. We collaborated with experts from the medical field and the movie industry to evaluate the usability of our technology in real-world scenarios. The presented architectures achieve a wide coverage of display and rendering setups and at the same time share major components and concepts. Thus, they build a strong foundation for a unified system that supports a variety of use cases.Heutzutage existiert ein großer Anwendungsbereich fĂŒr 3D-Grafikapplikationen wie wissenschaftliche Visualisierungen, 3D-Inhalte in Webseiten, und Unterhaltungssoftware. Gleichzeitig sind die GerĂ€te und Plattformen, welche die Anwendungen ausfĂŒhren und anzeigen, heterogener als je zuvor. AnzeigegerĂ€te reichen von mobilen GerĂ€ten zu Desktop-Systemen bis hin zu verteilten Bildschirmumgebungen, die eine kollaborative Anwendung begĂŒnstigen. WĂ€hrend die LeistungsfĂ€higkeit der GerĂ€te stark schwanken kann, sollten die dort laufenden Visualisierungen konsistent sein. Das Anwendungsfeld sollte bestimmen, wie und auf welchem GerĂ€t Benutzer auf die Anwendung zugreifen, nicht die technischen Voraussetzungen zur Erzeugung der 3D-Grafik. Das Ziel dieser Thesis ist es, die diversen Herausforderungen zu untersuchen, die bei der Bereitstellung von konsistenten und skalierbaren Visualisierungsanwendungen auf heterogenen Plattformen eine Rolle spielen. WĂ€hrend wir nicht die Vielzahl an möglichen AnwendungsfĂ€llen abdecken konnten, haben wir eine reprĂ€sentative Auswahl an Rendering-Architekturen in den Kernbereichen wissenschaftliche Visualisierung, web-basierte 3D-Anwendungen, und virtuelle Filmproduktion entwickelt. Um die geforderte QualitĂ€t, Leistung, und Skalierbarkeit fĂŒr verschiedene Client-GerĂ€te und -Anzeigen zu gewĂ€hrleisten, fokussieren sich unsere Architekturen auf die effiziente Nutzung und Kombination der verfĂŒgbaren Client-, Server-, und Netzwerkressourcen. Wir prĂ€sentieren innovative Lösungen, die hybrides und verteiltes Rendering als auch das Verwalten der DatensĂ€tze und Streaming der 3D-Ausgabe umfassen. Wir etablieren den Web-Browser als vielversprechende Plattform fĂŒr zugĂ€ngliche und portierbare Visualisierungsdienste. Um die Verwendbarkeit unserer Technologie in realitĂ€tsnahen Szenarien zu testen, haben wir mit Experten aus der Medizin und Filmindustrie zusammengearbeitet. Unsere Architekturen erreichen eine umfassende Abdeckung von Anzeige- und Rendering-Szenarien und teilen sich gleichzeitig wesentliche Komponenten und Konzepte. Sie bilden daher eine starke Grundlage fĂŒr ein einheitliches System, das eine Vielzahl an AnwendungsfĂ€llen unterstĂŒtzt

    RADGIS - an improved architecture for runtime-extensible, distributed GIS applications

    Get PDF
    A number of GIS architectures and technologies have emerged recently to facilitate the visualisation and processing of geospatial data over the Web. The work presented in this dissertation builds on these efforts and undertakes to overcome some of the major problems with traditional GIS client architectures, including application bloat, lack of customisability, and lack of interoperability between GIS products. In this dissertation we describe how a new client-side GIS architecture was developed and implemented as a proof-of-concept application called RADGIS, which is based on open standards and emerging distributed component-based software paradigms. RADGIS reflects the current trend in development focus from Web browser-based applications to customised clients, based on open standards, that make use of distributed Web services. While much attention has been paid to exposing data on the Web, there is growing momentum towards providing “value-added” services. A good example of this is the tremendous industry interest in the provision of location-based services, which has been discussed as a special use-case of our RADGIS architecture. Thus, in the near future client applications will not simply be used to access data transparently, but will also become facilitators for the location-transparent invocation of local and remote services. This flexible architecture will ensure that data can be stored and processed independently of the location of the client that wishes to view or interact with it. Our RADGIS application enables content developers and end-users to create and/or customise GIS applications dynamically at runtime through the incorporation of GIS services. This ensures that the client application has the flexibility to withstand changing levels of expertise or user requirements. These GIS services are implemented as components that execute locally on the client machine, or as remote CORBA Objects or EJBs. Assembly and deployment of these components is achieved using a specialised XML descriptor. This XML descriptor is written using a markup language that we developed specifically for this purpose, called DGCML, which contains deployment information, as well as a GUI specification and links to an XML-based help system that can be merged with the RADGIS client application’s existing help system. Thus, no additional requirements are imposed on object developers by the RADGIS architecture, i.e. there is no need to rewrite existing objects since DGCML acts as a runtime-customisable wrapper, allowing existing objects to be utilised by RADGIS. While the focus of this thesis has been on overcoming the above-mentioned problems with traditional GIS applications, the work described here can also be applied in a much broader context, especially in the development of highly customisable client applications that are able to integrate Web services at runtime

    Analysis of Visualisation and Interaction Tools Authors

    Get PDF
    This document provides an in-depth analysis of visualization and interaction tools employed in the context of Virtual Museum. This analysis is required to identify and design the tools and the different components that will be part of the Common Implementation Framework (CIF). The CIF will be the base of the web-based services and tools to support the development of Virtual Museums with particular attention to online Virtual Museum.The main goal is to provide to the stakeholders and developers an useful platform to support and help them in the development of their projects, despite the nature of the project itself. The design of the Common Implementation Framework (CIF) is based on an analysis of the typical workflow ofthe V-MUST partners and their perceived limitations of current technologies. This document is based also on the results of the V-MUST technical questionnaire (presented in the Deliverable 4.1). Based on these two source of information, we have selected some important tools (mainly visualization tools) and services and we elaborate some first guidelines and ideas for the design and development of the CIF, that shall provide a technological foundation for the V-MUST Platform, together with the V-MUST repository/repositories and the additional services defined in the WP4. Two state of the art reports, one about user interface design and another one about visualization technologies have been also provided in this document
    • 

    corecore