576 research outputs found

    A Statistically Efficient Estimator for Co-array Based DoA Estimation

    Get PDF
    Co-array-based Direction of Arrival (DoA) estimation using Sparse linear arrays (SLAs) has recently gained considerable interest in array processing due to the attractive capability of providing enhanced degrees of freedom. Although a variety of estimators have been suggested in the literature for co-array-based DoA estimation, none of them are statistically efficient. This work introduces a novel Weighted Least Squares (WLS) estimator for the co-array-based DoA estimation employing the covariance fitting method. Then, an optimal weighting is given so that the asymptotic performance of the proposed WLS estimator coincides with the Cram\'{e}r-Rao Bound (CRB), thereby ensuring statistical efficiency of resulting WLS estimator. This implies that the proposed WLS estimator has significantly better performance compared to existing methods in the literature. Numerical simulations are provided to corroborate the asymptotic statistical efficiency and the improved performance of the proposed estimator

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Statistically Efficient Methods for Pitch and DOA Estimation

    Get PDF

    A Geometric Approach to Covariance Matrix Estimation and its Applications to Radar Problems

    Full text link
    A new class of disturbance covariance matrix estimators for radar signal processing applications is introduced following a geometric paradigm. Each estimator is associated with a given unitary invariant norm and performs the sample covariance matrix projection into a specific set of structured covariance matrices. Regardless of the considered norm, an efficient solution technique to handle the resulting constrained optimization problem is developed. Specifically, it is shown that the new family of distribution-free estimators shares a shrinkagetype form; besides, the eigenvalues estimate just requires the solution of a one-dimensional convex problem whose objective function depends on the considered unitary norm. For the two most common norm instances, i.e., Frobenius and spectral, very efficient algorithms are developed to solve the aforementioned one-dimensional optimization leading to almost closed form covariance estimates. At the analysis stage, the performance of the new estimators is assessed in terms of achievable Signal to Interference plus Noise Ratio (SINR) both for a spatial and a Doppler processing assuming different data statistical characterizations. The results show that interesting SINR improvements with respect to some counterparts available in the open literature can be achieved especially in training starved regimes.Comment: submitted for journal publicatio

    Advanced array processing techniques and systems

    Get PDF
    Research and development on smart antennas, which are recognized as a promising technique to improve the performance of mobile communications, have been extensive in the recent years. Smart antennas combine multiple antenna elements with a signal processing capability in both space and time to optimize its radiation and reception pattern automatically in response to the signal environment. This paper concentrates on the signal processing aspects of smart antenna systems. Smart antennas are often classified as either switched-beam or adaptive-array systems, for which a variety of algorithms have been developed to enhance the signal of interest and reject the interference. The antenna systems need to differentiate the desired signal from the interference, and normally requires either a priori knowledge or the signal direction to achieve its goal. There exists a variety of methods for direction of arrival (DOA) estimation with conflicting demands of accuracy and computation. Similarly, there are many algorithms to compute array weights to direct the maximum radiation of the array pattern toward the signal and place nulls toward the interference, each with its convergence property and computational complexity. This paper discusses some of the typical algorithms for DOA estimation and beamforming. The concept and details of each algorithm are provided. Smart antennas can significantly help in improving the performance of communication systems by increasing channel capacity and spectrum efficiency, extending range coverage, multiplexing channels with spatial division multiple access (SDMA), and compensating electronically for aperture distortion. They also reduce delay spread, multipath fading, co-channel interference, system complexity, bit error rates, and outage probability. In addition, smart antennas can locate mobile units or assist the location determination through DOA and range estimation. This capability can support and benefit many location-based services including emergency assistance, tracking services, safety services, billing services, and information services such as navigation, weather, traffic, and directory assistance

    A Study on MIMO Wireless Communication Channel Performance in Correlated Channels

    Get PDF
    MIMO wireless communication system is gaining popularity by days due to its versatility and wide applicability. When signal travels through wireless link it gets affected due to the disturbances present in the channel i.e. different sorts of interference and noise. Plus because there may or may not be a Line of sight (LOS) path between transmitter and receiver signal copies leaving the transmitter at the same time reaches the receiver with different delays and attenuation due to multiple reflections and interfere with each other at the receiver. Therefore fading of received signal power is also observed in case of a wireless MIMO link. In case of wireless two most important objectives can be channel estimation and signal detection. The importance of the wireless channel estimation can be attributed to faithful signal detection and transmit beam forming, power allocation etc. when Channel state information (CSI) is communicated to the transmitter via feedback loop in case of uni-directional channel or by simultaneous estimation by the transmitter itself in case of bi-directional channel. This text introduces some aspects of signal detection and mostly different aspects of channel estimation and explains why it is important in context of signal detection, beam forming etc. A brief introduction to antenna arrays and beam forming procedures have been given here. The cause of occurrence of spatial and temporal correlations have been discussed and different ways of modelling the spatial and temporal correlations involved are also briefly introduced in this text. How different link and link-end properties e.g. antenna spacing, angular spread of radiation beam, mean angle of radiation, mutual coupling present between elements of an antenna array etc. affects the channel correlations thereby affecting the performance of the MIMO wireless communication channel. Modelling of antenna mutual coupling and different estimation and compensation techniques are also discussed here
    corecore