5 research outputs found

    A Statistical Test of Heterogeneous Subgraph Densities to Assess Clusterability

    Get PDF
    Determining if a graph displays a clustered structure prior to subjecting it to any cluster detection technique has recently gained attention in the literature. Attempts to group graph vertices into clusters when a graph does not have a clustered structure is not only a waste of time; it will also lead to misleading conclusions. To address this problem, we introduce a novel statistical test, the-test, which is based on comparisons of local and global densities. Our goal is to assess whether a given graph meets the necessary conditions to be meaningfully summarized by clusters of vertices. We empirically explore our test’s behavior under a number of graph structures. We also compare it to other recently published tests. From a theoretical standpoint, our test is more general, versatile and transparent than recently published competing techniques. It is based on the examination of intuitive quantities, applies equally to weighted and unweighted graphs and allows comparisons across graphs. More importantly, it does not rely on any distributional assumptions, other than the universally accepted definition of a clustered graph. Empirically, our test is shown to be more responsive to graph structure than other competing tests

    An Initial Framework Assessing the Safety of Complex Systems

    Get PDF
    Trabajo presentado en la Conference on Complex Systems, celebrada online del 7 al 11 de diciembre de 2020.Atmospheric blocking events, that is large-scale nearly stationary atmospheric pressure patterns, are often associated with extreme weather in the mid-latitudes, such as heat waves and cold spells which have significant consequences on ecosystems, human health and economy. The high impact of blocking events has motivated numerous studies. However, there is not yet a comprehensive theory explaining their onset, maintenance and decay and their numerical prediction remains a challenge. In recent years, a number of studies have successfully employed complex network descriptions of fluid transport to characterize dynamical patterns in geophysical flows. The aim of the current work is to investigate the potential of so called Lagrangian flow networks for the detection and perhaps forecasting of atmospheric blocking events. The network is constructed by associating nodes to regions of the atmosphere and establishing links based on the flux of material between these nodes during a given time interval. One can then use effective tools and metrics developed in the context of graph theory to explore the atmospheric flow properties. In particular, Ser-Giacomi et al. [1] showed how optimal paths in a Lagrangian flow network highlight distinctive circulation patterns associated with atmospheric blocking events. We extend these results by studying the behavior of selected network measures (such as degree, entropy and harmonic closeness centrality)at the onset of and during blocking situations, demonstrating their ability to trace the spatio-temporal characteristics of these events.This research was conducted as part of the CAFE (Climate Advanced Forecasting of sub-seasonal Extremes) Innovative Training Network which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 813844

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    EUROCOMB 21 Book of extended abstracts

    Get PDF
    corecore