554 research outputs found

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    Biomaterials for Bone Tissue Engineering 2020

    Get PDF
    This book presents recent advances in the field of bone tissue engineering, including molecular insights, innovative biomaterials with regenerative properties (e.g., osteoinduction and osteoconduction), and physical stimuli to enhance bone regeneration

    Vat photopolymerisation 3D printing of controlled drug delivery devices

    Get PDF
    Pharmaceutical three-dimensional (3D) printing has led to a paradigm shift in the way medicines are designed and manufactured, moving away from the traditional ‘one-size-fits-all’ approaches and advancing towards personalised medicines. Among different 3D printing techniques, vat photopolymerisation 3D printing affords superior printing resolution, which in turn enables fabrication of micro-structures and smooth finishes. This thesis aims to investigate different vat photopolymerisation 3D printing techniques for the fabrication of personalised drug delivery devices for different routes of administration. Stereolithography (SLA) and digital light processing (DLP) 3D printing was used to manufacture devices with flexible materials for localised delivery of a single drug in the bladder and at the anterior segment of the eye. In vitro release studies demonstrated drug releases from these devices were sustained over weeks. Subsequently, to investigate the feasibility of loading more than one drug in a single dosage form, clinically relevant multi-layer antihypertensive polypills were fabricated using SLA 3D printing. A drug-photopolymer interaction was observed from these polypills, and Michael’s addition reaction was confirmed to have occurred. Despite these studies demonstrating the viable use of vat photopolymerization 3D printing for fabricating drug delivery devices, the bulky nature of current printers could be a barrier to clinical integration. As such, a smartphone-enabled DLP 3D printing system was developed to fabricate personalised oral dosage forms and patient-specific drug delivery devices. The portability of this printer could secure exciting opportunities for manufacturing personalised medicines at point-of-care settings. Overall, this thesis showed the potential of vat photopolymerisation 3D printing in preparing different patient-centric drug delivery devices with tuneable and sustained release profiles as well as advancing traditional treatments towards digital healthcare

    ACARORUM CATALOGUS IX. Acariformes, Acaridida, Schizoglyphoidea (Schizoglyphidae), Histiostomatoidea (Histiostomatidae, Guanolichidae), Canestrinioidea (Canestriniidae, Chetochelacaridae, Lophonotacaridae, Heterocoptidae), Hemisarcoptoidea (Chaetodactylidae, Hyadesiidae, Algophagidae, Hemisarcoptidae, Carpoglyphidae, Winterschmidtiidae)

    Get PDF
    The 9th volume of the series Acarorum Catalogus contains lists of mites of 13 families, 225 genera and 1268 species of the superfamilies Schizoglyphoidea, Histiostomatoidea, Canestrinioidea and Hemisarcoptoidea. Most of these mites live on insects or other animals (as parasites, phoretic or commensals), some inhabit rotten plant material, dung or fungi. Mites of the families Chetochelacaridae and Lophonotacaridae are specialised to live with Myriapods (Diplopoda). The peculiar aquatic or intertidal mites of the families Hyadesidae and Algophagidae are also included.Publishe

    Current Insights on Lipid-Based Nanosystems

    Get PDF
    Lipid-based nanosystems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), cationic lipid nanoparticles, nanoemulsions, and liposomes, have been extensively studied to improve drug delivery through different administration routes. The main advantages of these systems are their ability to protect, transport, and control the release of lipophilic and hydrophilic molecules (either small-molecular-weight molecules or macromolecules); the use of generally recognized as safe (GRAS) excipients that minimize the toxicity of the formulations; and the possibility to modulate pharmacokinetics and enable the site-specific delivery of encapsulated payloads. In addition, the versatility of lipid-based nanosystems has further been demonstrated for the delivery of vaccines, the protection of active cosmetic ingredients, and the improvement of moisturizing properties of cosmetic formulations.Lipid-based nanosystems are well established and there are already different commercially approved formulations for various human disorders. This success has paved the way for the diversification of the pipeline of development, to address unmet medical needs for several indications, such as cancer, neurological disorders, and autoimmune, genetic, and infectious diseases.This Special Issue aims to update readers on the latest research on lipid-based nanosystems, both at the preclinical and clinical levels. A series of 15 articles (six reviews and nine studies) is presented, with authors from 12 different countries, showing the globality of the investigations that are being carried out in this area

    Experimentally supported computational method for the optimal design selection of 3D printed fracture healing implant geometries

    Get PDF
    The development of AM technologies has brought about very promising opportunities in the field of tissue regeneration, especially due to the design freedom they enable. However, the tools and procedures needed to enable medical designers to make use of these revolutionary technologies still need to be developed. In particular, design tools to make implants with optimal geometries for tissue regeneration and procedures to manufacture and test such implants need to be developed to enable the adoption of these technologies by medical designers and biologists designing implants. This thesis aims to address this need. In order to best use the design freedom that AM brings; it is necessary to define the optimal geometries for specific applications. A novel tool that enables the design of optimal scaffold geometries and could be easily adopted by medical designers was developed here by proposing an intuitive design selection framework that graphically allows the user to gain an understanding of how design variables affect the chosen response variables. The novel framework is flexible, enabling the incorporation of any number of necessary computational models. Triply periodic minimal surface (TPMS) equations were used to simplify the design variables needed to generate an optimal porous scaffold geometry. The potential of this framework was demonstrated by using it to find the optimal TPMS type and volume fraction for a fracture fixation scaffold. Experiments were carried out to demonstrate that TCDMDA biocompatible scaffolds of appropriate pore size could be manufactured via projection micro stereolithography. The experiments successfully demonstrate for the first time that TCDMDA scaffolds can be manufactured via PµSLA by using a suitable combination of UV intensity and layer time. It was also demonstrated for the first time that hMSCs adhere to the surface of TCDMDA samples manufactured via PµSLA. To further enhance the cell adhesion, an oxygen plasma treatment was carried out. For the second part of this study it was found that the media could not penetrate the scaffold pores sufficiently, invalidating the results. The presented results highlighting a permeability challenge with TCDMDA scaffolds manufactured via PµSLA are nevertheless expected to contribute to future studies in this area. Experiments were also carried out to demonstrate the biocompatibility of scaffolds manufactured via stereolithography using Dental LT resin (Formlabs, UK). Successful adhesion of hMSCs to the surface of these scaffolds was shown in Chapter 4. Another novel finding of this thesis was that the Dental LT scaffolds manufactured via SLA were able to successfully enable cell growth, cell differentiation and mineralization in the presence of osteogenic media and BMP-2. The final part of the thesis focused on expanding the developed design selection framework to include not only a scaffold for fracture healing, but also a matching fracture fixation plate. Fracture fixation plates have been studied for centuries, but there is little research investigating the combination of a fracture fixation plate and a scaffold. The rise of AM has inspired the development of auxetic geometries, which have been applied to fracture fixation plates before and shown to reduce stress shielding. Moreover, stiffness grading has also proved very promising in improving fracture healing. In this thesis these two promising concepts are combined for the first time demonstrating reduced stress shielding compared to a conventional fixation plate geometry. Moreover, the thesis presents a novel computational design selection framework to find optimal scaffold and fracture plate geometries which lead to an improved healing outcome. The framework may be easily adopted by medical designers

    Bio-Based Materials: Contribution to Advancing Circular Economy

    Get PDF
    This reprint focuses on studies dealing with bio-based materials and its contribution to a circular economy. Research dealing with recycling, waste conversion to bio-based products, the development of bio-based composites, and surface treatments on cellulose fibres have been included in this reprint

    Current Trends and Future Directions in Prosthetic and Implant Dentistry in the Digital Era

    Get PDF
    Advancements in digital technologies are reshaping the world of dentistry, from prosthodontics to implant dentistry. Intraoral scanners, facial scanners, 3D printers, and milling machines have revolutionized the clinical approach and operative workflow in daily practice. However, digital dentistry brings several challenges to clinicians due to the rapid evolution of new technologies and the lack of evidence-based guidelines for their correct use. The aim of this Special Issue is to cover the latest advances in the development and application of digital technologies in prosthetic and implant dentistry. We wish to provide both clinicians and researchers with a comprehensive and up-to-date source of information on current trends, limitations, and potential future applications of digital technologies in daily clinical practice

    THE ANALYSIS OF ANCIENT DNA: FROM MITOCHONDRIA TO PATHOGENS

    Get PDF
    Ancient DNA (aDNA) is arguably one of the most difficult science fields to work in due to the constant battle against contamination and degradation; however, it is also one of the most rewarding. aDNA researchers have consistently garnered interest the world over with their findings and sparking the curiosity of many who wish to know more about who we are as Homo sapiens. Mitochondrial DNA (mtDNA) and pathogen DNA were used in this dissertation to understand more about where populations came from, how they moved, and what their environment was like through the identification of their maternally inherited mtDNA and pathogens. This is a synthesis of my work and collaboration with other researchers both in lab and at the computer to add more data to the story of humankind
    • …
    corecore