4,623 research outputs found

    Evaluation of space SAR as a land-cover classification

    Get PDF
    The multidimensional approach to the mapping of land cover, crops, and forests is reported. Dimensionality is achieved by using data from sensors such as LANDSAT to augment Seasat and Shuttle Image Radar (SIR) data, using different image features such as tone and texture, and acquiring multidate data. Seasat, Shuttle Imaging Radar (SIR-A), and LANDSAT data are used both individually and in combination to map land cover in Oklahoma. The results indicates that radar is the best single sensor (72% accuracy) and produces the best sensor combination (97.5% accuracy) for discriminating among five land cover categories. Multidate Seasat data and a single data of LANDSAT coverage are then used in a crop classification study of western Kansas. The highest accuracy for a single channel is achieved using a Seasat scene, which produces a classification accuracy of 67%. Classification accuracy increases to approximately 75% when either a multidate Seasat combination or LANDSAT data in a multisensor combination is used. The tonal and textural elements of SIR-A data are then used both alone and in combination to classify forests into five categories

    Remote sensing of earth terrain

    Get PDF
    In remote sensing, the encountered geophysical media such as agricultural canopy, forest, snow, or ice are inhomogeneous and contain scatters in a random manner. Furthermore, weather conditions such as fog, mist, or snow cover can intervene the electromagnetic observation of the remotely sensed media. In the modelling of such media accounting for the weather effects, a multi-layer random medium model has been developed. The scattering effects of the random media are described by three-dimensional correlation functions with variances and correlation lengths corresponding to the fluctuation strengths and the physical geometry of the inhomogeneities, respectively. With proper consideration of the dyadic Green's function and its singularities, the strong fluctuation theory is used to calculate the effective permittivities which account for the modification of the wave speed and attenuation in the presence of the scatters. The distorted Born approximation is then applied to obtain the correlations of the scattered fields. From the correlation of the scattered field, calculated is the complete set of scattering coefficients for polarimetric radar observation or brightness temperature in passive radiometer applications. In the remote sensing of terrestrial ecosystems, the development of microwave remote sensing technology and the potential of SAR to measure vegetation structure and biomass have increased effort to conduct experimental and theoretical researches on the interactions between microwave and vegetation canopies. The overall objective is to develop inversion algorithms to retrieve biophysical parameters from radar data. In this perspective, theoretical models and experimental data are methodically interconnected in the following manner: Due to the complexity of the interactions involved, all theoretical models have limited domains of validity; the proposed solution is to use theoretical models, which is validated by experiments, to establish the region in which the radar response is most sensitive to the parameters of interest; theoretically simulated data will be used to generate simple invertible models over the region. For applications to the remote sensing of sea ice, the developed theoretical models need to be tested with experimental measurements. With measured ground truth such as ice thickness, temperature, salinity, and structure, input parameters to the theoretical models can be obtained to calculate the polarimetric scattering coefficients for radars or brightness temperature for radiometers and then compare theoretical results with experimental data. Validated models will play an important role in the interpretation and classification of ice in monitoring global ice cover from space borne remote sensors in the future. We present an inversion algorithm based on a recently developed inversion method referred to as the Renormalized Source-Type Integral Equation approach. The objective of this method is to overcome some of the limitations and difficulties of the iterative Born technique. It recasts the inversion, which is nonlinear in nature, in terms of the solution of a set of linear equations; however, the final inversion equation is still nonlinear. The derived inversion equation is an exact equation which sums up the iterative Neuman (or Born) series in a closed form and, thus, is a valid representation even in the case when the Born series diverges; hence, the name Renormalized Source-Type Integral Equation Approach

    Remote sensing of earth terrain

    Get PDF
    Abstracts from 46 refereed journal and conference papers are presented for research on remote sensing of earth terrain. The topics covered related to remote sensing include the following: mathematical models, vegetation cover, sea ice, finite difference theory, electromagnetic waves, polarimetry, neural networks, random media, synthetic aperture radar, electromagnetic bias, and others

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    Active microwave users working group program planning

    Get PDF
    A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    Get PDF
    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth

    NASA geology program bibliography

    Get PDF
    A bibliography of scientific papers, articles, and books based on research supported by the NASA Geology Program is given. The citations cover the period 1980 to 1990. An author index is included

    The integration of freely available medium resolution optical sensors with Synthetic Aperture Radar (SAR) imagery capabilities for American bramble (Rubus cuneifolius) invasion detection and mapping.

    Get PDF
    Doctoral Degree. University of KwaZulu- Natal, Pietermaritzburg.The emergence of American bramble (Rubus cuneifolius) across South Africa has caused severe ecological and economic damage. To date, most of the efforts to mitigate its effects have been largely unsuccessful due to its prolific growth and widespread distribution. Accurate and timeous detection and mapping of Bramble is therefore critical to the development of effective eradication management plans. Hence, this study sought to determine the potential of freely available, new generation medium spatial resolution satellite imagery for the detection and mapping of American Bramble infestations within the UNESCO world heritage site of the uKhahlamba Drakensberg Park (UDP). The first part of the thesis determined the potential of conventional freely available remote sensing imagery for the detection and mapping of Bramble. Utilizing the Support Vector Machine (SVM) learning algorithm, it was established that Bramble could be detected with limited users (45%) and reasonable producers (80%) accuracies. Much of the confusion occurred between the grassland land cover class and Bramble. The second part of the study focused on fusing the new age optical imagery and Synthetic Aperture Radar (SAR) imagery for Bramble detection and mapping. The synergistic potential of fused imagery was evaluated using multiclass SVM classification algorithm. Feature level image fusion of optical imagery and SAR resulted in an overall classification accuracy of 76%, with increased users and producers’ accuracies for Bramble. These positive results offered an opportunity to explore the polarization variables associated with SAR imagery for improved classification accuracies. The final section of the study dwelt on the use of Vegetation Indices (VIs) derived from new age satellite imagery, in concert with SAR to improve Bramble classification accuracies. Whereas improvement in classification accuracies were minimal, the potential of stand-alone VIs to detect and map Bramble (80%) was noteworthy. Lastly, dual-polarized SAR was fused with new age optical imagery to determine the synergistic potential of dual-polarized SAR to increase Bramble mapping accuracies. Results indicated a marked increase in overall Bramble classification accuracy (85%), suggesting improved potential of dual-polarized SAR and optical imagery in invasive species detection and mapping. Overall, this study provides sufficient evidence of the complimentary and synergistic potential of active and passive remote sensing imagery for invasive alien species detection and mapping. Results of this study are important for supporting contemporary decision making relating to invasive species management and eradication in order to safeguard ecological biodiversity and pristine status of nationally protected areas
    • …
    corecore