44 research outputs found

    Understanding and mitigating the impact of Internet demand in everyday life

    Get PDF
    Digital devices and online services are increasingly embedded within our everyday lives. The growth in usage of these technologies has implications for environmental sustainability due to the energy demand from the underlying Internet infrastructure (e.g. communication networks, data centres). Energy efficiencies in the infrastructure are important, but they are made inconsequential by the sheer growth in the demand for data. We need to transition users’ Internet-connected practices and adapt HumanComputer Interaction (HCI) design in less demanding and more sustainable directions. Yet it’s not clear what the most data demanding devices and online activities are in users’ lives, and how this demand can be intervened with most effectively through HCI design. In this thesis, the issue of Internet demand is explored—uncovering how it is embedded into digital devices, online services and users’ everyday practices. Specifically, I conduct a series of experiments to understand Internet demand on mobile devices and in the home, involving: a large-scale quantitative analysis of 398 mobile devices; and a mixed-methods study involving month-long home router logging and interviews with 20 participants (nine households). Through these studies, I provide an in-depth understanding of how digital activities in users’ lives augment Internet demand (particularly through the practice of watching), and outline the roles for the HCI community and broader stakeholders (policy makers, businesses) in curtailing this demand. I then juxtapose these formative studies with design workshops involving 13 participants; these discover how we can reduce Internet demand in ways that users may accept or even want. From this, I provide specific design recommendations for the HCI community aiming to alleviate the issue of Internet growth for concerns of sustainability, as well as holistically mitigate the negative impacts that digital devices and online services can create in users’ lives

    A Deep Learning-based Approach to Identifying and Mitigating Network Attacks Within SDN Environments Using Non-standard Data Sources

    Get PDF
    Modern society is increasingly dependent on computer networks, which are essential to delivering an increasing number of key services. With this increasing dependence, comes a corresponding increase in global traffic and users. One of the tools administrators are using to deal with this growth is Software Defined Networking (SDN). SDN changes the traditional distributed networking design to a more programmable centralised solution, based around the SDN controller. This allows administrators to respond more quickly to changing network conditions. However, this change in paradigm, along with the growing use of encryption can cause other issues. For many years, security administrators have used techniques such as deep packet inspection and signature analysis to detect malicious activity. These methods are becoming less common as artificial intelligence (AI) and deep learning technologies mature. AI and deep learning have advantages in being able to cope with 0-day attacks and being able to detect malicious activity despite the use of encryption and obfuscation techniques. However, SDN reduces the volume of data that is available for analysis with these machine learning techniques. Rather than packet information, SDN relies on flows, which are abstract representations of network activity. Security researchers have been slow to move to this new method of networking, in part because of this reduction in data, however doing so could have advantages in responding quickly to malicious activity. This research project seeks to provide a way to reconcile the contradiction apparent, by building a deep learning model that can achieve comparable results to other state-of-the-art models, while using 70% fewer features. This is achieved through the creation of new data from logs, as well as creation of a new risk-based sampling method to prioritise suspect flows for analysis, which can successfully prioritise over 90% of malicious flows from leading datasets. Additionally, provided is a mitigation method that can work with a SDN solution to automatically mitigate attacks after they are found, showcasing the advantages of closer integration with SDN

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Mecanismos para controlo e gestĂŁo de redes 5G: redes de operador

    Get PDF
    In 5G networks, time-series data will be omnipresent for the monitoring of network metrics. With the increase in the number of Internet of Things (IoT) devices in the next years, it is expected that the number of real-time time-series data streams increases at a fast pace. To be able to monitor those streams, test and correlate different algorithms and metrics simultaneously and in a seamless way, time-series forecasting is becoming essential for the pro-active successful management of the network. The objective of this dissertation is to design, implement and test a prediction system in a communication network, that allows integrating various networks, such as a vehicular network and a 4G operator network, to improve the network reliability and Quality-of-Service (QoS). To do that, the dissertation has three main goals: (1) the analysis of different network datasets and implementation of different approaches to forecast network metrics, to test different techniques; (2) the design and implementation of a real-time distributed time-series forecasting architecture, to enable the network operator to make predictions about the network metrics; and lastly, (3) to use the forecasting models made previously and apply them to improve the network performance using resource management policies. The tests done with two different datasets, addressing the use cases of congestion management and resource splitting in a network with a limited number of resources, show that the network performance can be improved with proactive management made by a real-time system able to predict the network metrics and act on the network accordingly. It is also done a study about what network metrics can cause reduced accessibility in 4G networks, for the network operator to act more efficiently and pro-actively to avoid such eventsEm redes 5G, sĂ©ries temporais serĂŁo omnipresentes para a monitorização de mĂ©tricas de rede. Com o aumento do nĂșmero de dispositivos da Internet das Coisas (IoT) nos prĂłximos anos, Ă© esperado que o nĂșmero de fluxos de sĂ©ries temporais em tempo real cresça a um ritmo elevado. Para monitorizar esses fluxos, testar e correlacionar diferentes algoritmos e mĂ©tricas simultaneamente e de maneira integrada, a previsĂŁo de sĂ©ries temporais estĂĄ a tornar-se essencial para a gestĂŁo preventiva bem sucedida da rede. O objetivo desta dissertação Ă© desenhar, implementar e testar um sistema de previsĂŁo numa rede de comunicaçÔes, que permite integrar vĂĄrias redes diferentes, como por exemplo uma rede veicular e uma rede 4G de operador, para melhorar a fiabilidade e a qualidade de serviço (QoS). Para isso, a dissertação tem trĂȘs objetivos principais: (1) a anĂĄlise de diferentes datasets de rede e subsequente implementação de diferentes abordagens para previsĂŁo de mĂ©tricas de rede, para testar diferentes tĂ©cnicas; (2) o desenho e implementação de uma arquitetura distribuĂ­da de previsĂŁo de sĂ©ries temporais em tempo real, para permitir ao operador de rede efetuar previsĂ”es sobre as mĂ©tricas de rede; e finalmente, (3) o uso de modelos de previsĂŁo criados anteriormente e sua aplicação para melhorar o desempenho da rede utilizando polĂ­ticas de gestĂŁo de recursos. Os testes efetuados com dois datasets diferentes, endereçando os casos de uso de gestĂŁo de congestionamento e divisĂŁo de recursos numa rede com recursos limitados, mostram que o desempenho da rede pode ser melhorado com gestĂŁo preventiva da rede efetuada por um sistema em tempo real capaz de prever mĂ©tricas de rede e atuar em conformidade na rede. TambĂ©m Ă© efetuado um estudo sobre que mĂ©tricas de rede podem causar reduzida acessibilidade em redes 4G, para o operador de rede atuar mais eficazmente e proativamente para evitar tais acontecimentos.Mestrado em Engenharia de Computadores e TelemĂĄtic

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Trustworthy Wireless Personal Area Networks

    Get PDF
    In the Internet of Things (IoT), everyday objects are equipped with the ability to compute and communicate. These smart things have invaded the lives of everyday people, being constantly carried or worn on our bodies, and entering into our homes, our healthcare, and beyond. This has given rise to wireless networks of smart, connected, always-on, personal things that are constantly around us, and have unfettered access to our most personal data as well as all of the other devices that we own and encounter throughout our day. It should, therefore, come as no surprise that our personal devices and data are frequent targets of ever-present threats. Securing these devices and networks, however, is challenging. In this dissertation, we outline three critical problems in the context of Wireless Personal Area Networks (WPANs) and present our solutions to these problems. First, I present our Trusted I/O solution (BASTION-SGX) for protecting sensitive user data transferred between wirelessly connected (Bluetooth) devices. This work shows how in-transit data can be protected from privileged threats, such as a compromised OS, on commodity systems. I present insights into the Bluetooth architecture, Intel’s Software Guard Extensions (SGX), and how a Trusted I/O solution can be engineered on commodity devices equipped with SGX. Second, I present our work on AMULET and how we successfully built a wearable health hub that can run multiple health applications, provide strong security properties, and operate on a single charge for weeks or even months at a time. I present the design and evaluation of our highly efficient event-driven programming model, the design of our low-power operating system, and developer tools for profiling ultra-low-power applications at compile time. Third, I present a new approach (VIA) that helps devices at the center of WPANs (e.g., smartphones) to verify the authenticity of interactions with other devices. This work builds on past work in anomaly detection techniques and shows how these techniques can be applied to Bluetooth network traffic. Specifically, we show how to create normality models based on fine- and course-grained insights from network traffic, which can be used to verify the authenticity of future interactions

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well

    Cybersecurity of Digital Service Chains

    Get PDF
    This open access book presents the main scientific results from the H2020 GUARD project. The GUARD project aims at filling the current technological gap between software management paradigms and cybersecurity models, the latter still lacking orchestration and agility to effectively address the dynamicity of the former. This book provides a comprehensive review of the main concepts, architectures, algorithms, and non-technical aspects developed during three years of investigation; the description of the Smart Mobility use case developed at the end of the project gives a practical example of how the GUARD platform and related technologies can be deployed in practical scenarios. We expect the book to be interesting for the broad group of researchers, engineers, and professionals daily experiencing the inadequacy of outdated cybersecurity models for modern computing environments and cyber-physical systems

    Cyber-Physical Threat Intelligence for Critical Infrastructures Security

    Get PDF
    Modern critical infrastructures can be considered as large scale Cyber Physical Systems (CPS). Therefore, when designing, implementing, and operating systems for Critical Infrastructure Protection (CIP), the boundaries between physical security and cybersecurity are blurred. Emerging systems for Critical Infrastructures Security and Protection must therefore consider integrated approaches that emphasize the interplay between cybersecurity and physical security techniques. Hence, there is a need for a new type of integrated security intelligence i.e., Cyber-Physical Threat Intelligence (CPTI). This book presents novel solutions for integrated Cyber-Physical Threat Intelligence for infrastructures in various sectors, such as Industrial Sites and Plants, Air Transport, Gas, Healthcare, and Finance. The solutions rely on novel methods and technologies, such as integrated modelling for cyber-physical systems, novel reliance indicators, and data driven approaches including BigData analytics and Artificial Intelligence (AI). Some of the presented approaches are sector agnostic i.e., applicable to different sectors with a fair customization effort. Nevertheless, the book presents also peculiar challenges of specific sectors and how they can be addressed. The presented solutions consider the European policy context for Security, Cyber security, and Critical Infrastructure protection, as laid out by the European Commission (EC) to support its Member States to protect and ensure the resilience of their critical infrastructures. Most of the co-authors and contributors are from European Research and Technology Organizations, as well as from European Critical Infrastructure Operators. Hence, the presented solutions respect the European approach to CIP, as reflected in the pillars of the European policy framework. The latter includes for example the Directive on security of network and information systems (NIS Directive), the Directive on protecting European Critical Infrastructures, the General Data Protection Regulation (GDPR), and the Cybersecurity Act Regulation. The sector specific solutions that are described in the book have been developed and validated in the scope of several European Commission (EC) co-funded projects on Critical Infrastructure Protection (CIP), which focus on the listed sectors. Overall, the book illustrates a rich set of systems, technologies, and applications that critical infrastructure operators could consult to shape their future strategies. It also provides a catalogue of CPTI case studies in different sectors, which could be useful for security consultants and practitioners as well
    corecore