327,698 research outputs found

    Person re-identification via rich color-gradient feature

    Full text link
    © 2016 IEEE. Person re-identification refers to match the same pedestrian across disjoint views in non-overlapping camera networks. Lots of local and global features in the literature are put forward to solve the matching problem, where color feature is robust to viewpoint variance and gradient feature provides a rich representation robust to illumination change. However, how to effectively combine the color and gradient features is an open problem. In this paper, to effectively leverage the color-gradient property in multiple color spaces, we propose a novel Second Order Histogram feature (SOH) for person reidentification in large surveillance dataset. Firstly, we utilize discrete encoding to transform commonly used color space into Encoding Color Space (ECS), and calculate the statistical gradient features on each color channel. Then, a second order statistical distribution is calculated on each cell map with a spatial partition. In this way, the proposed SOH feature effectively leverages the statistical property of gradient and color as well as reduces the redundant information. Finally, a metric learned by KISSME [1] with Mahalanobis distance is used for person matching. Experimental results on three public datasets, VIPeR, CAVIAR and CUHK01, show the promise of the proposed approach

    Learning deep kernels for exponential family densities

    Get PDF
    The kernel exponential family is a rich class of distributions, which can be fit efficiently and with statistical guarantees by score matching. Being required to choose a priori a simple kernel such as the Gaussian, however, limits its practical applicability. We provide a scheme for learning a kernel parameterized by a deep network, which can find complex location-dependent features of the local data geometry. This gives a very rich class of density models, capable of fitting complex structures on moderate-dimensional problems. Compared to deep density models fit via maximum likelihood, our approach provides a complementary set of strengths and tradeoffs: in empirical studies, deep maximum-likelihood models can yield higher likelihoods, while our approach gives better estimates of the gradient of the log density, the score, which describes the distribution's shape

    Integrate template matching and statistical modeling for continuous speech recognition

    Get PDF
    Title from PDF of title page (University of Missouri--Columbia, viewed on May 30, 2012).The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Dissertation advisor: Dr. Yunxin ZhaoVita.Ph. D. University of Missouri--Columbia 2011"December 2011"In this dissertation, a novel approach of integrating template matching with statistical modeling is proposed to improve continuous speech recognition. Commonly used Hidden Markov Models (HMMs) are ineffective in modeling details of speech temporal evolutions, which can be overcome by template-based methods. However, template-based methods are difficult to be extended in large vocabulary continuous speech recognition (LVCSR). Our proposed approach takes advantages of both statistical modeling and template matching to overcome the weaknesses of traditional HMMs and conventional template-based methods. We use multiple Gaussian Mixture Model indices to represent each frame of speech templates. The local distances of log likelihood ratio and Kullback-Leibler divergence are proposed for dynamic time warping based template matching. In order to reduce computational complexity and storage space, we propose methods of minimum distance template selection and maximum log-likelihood template selection, and investigate a template compression method on top of template selection to further improve recognition performance. Experimental results on the TIMIT phone recognition task and a LVCSR task of telehealth captioning demonstrated that the proposed approach significantly improved the performance of recognition accuracy over the HMM baselines, and on the TIMIT task, the proposed method showed consistent performance improvements over progressively enhanced HMM baselines. Moreover, the template selection methods largely reduced computation and storage complexities. Finally, an investigation was made to combine acoustic scores in triphone template matching with scores of prosodic features, which showed positive effects on vowels in LVCSR.Includes bibliographical reference

    Three Dimensional Nonlinear Statistical Modeling Framework for Morphological Analysis

    Get PDF
    This dissertation describes a novel three-dimensional (3D) morphometric analysis framework for building statistical shape models and identifying shape differences between populations. This research generalizes the use of anatomical atlases on more complex anatomy as in case of irregular, flat bones, and bones with deformity and irregular bone growth. The foundations for this framework are: 1) Anatomical atlases which allow the creation of homologues anatomical models across populations; 2) Statistical representation for output models in a compact form to capture both local and global shape variation across populations; 3) Shape Analysis using automated 3D landmarking and surface matching. The proposed framework has various applications in clinical, forensic and physical anthropology fields. Extensive research has been published in peer-reviewed image processing, forensic anthropology, physical anthropology, biomedical engineering, and clinical orthopedics conferences and journals. The forthcoming discussion of existing methods for morphometric analysis, including manual and semi-automatic methods, addresses the need for automation of morphometric analysis and statistical atlases. Explanations of these existing methods for the construction of statistical shape models, including benefits and limitations of each method, provide evidence of the necessity for such a novel algorithm. A novel approach was taken to achieve accurate point correspondence in case of irregular and deformed anatomy. This was achieved using a scale space approach to detect prominent scale invariant features. These features were then matched and registered using a novel multi-scale method, utilizing both coordinate data as well as shape descriptors, followed by an overall surface deformation using a new constrained free-form deformation. Applications of output statistical atlases are discussed, including forensic applications for the skull sexing, as well as physical anthropology applications, such as asymmetry in clavicles. Clinical applications in pelvis reconstruction and studying of lumbar kinematics and studying thickness of bone and soft tissue are also discussed

    Feature extraction for range image interpretation using local topology statistics

    Get PDF
    This thesis presents an approach for interpreting range images of known subject matter, such as the human face, based on the extraction and matching of local features from the images. In recent years, approaches to interpret two-dimensional (2D) images based on local feature extraction have advanced greatly, for example, systems such as Scale Invariant Feature Transform (SIFT) can detect and describe the local features in the 2D images effectively. With the aid of rapidly advancing three-dimensional (3D) imaging technology, in particular, the advent of commercially available surface scanning systems based on photogrammetry, image representation has been able to extend into the third dimension. Moreover, range images confer a number of advantages over conventional 2D images, for instance, the properties of being invariant to lighting, pose and viewpoint changes. As a result, an attempt has been made in this work to establish how best to represent the local range surface with a feature descriptor, thereby developing a matching system that takes advantages of the third dimension present in the range images and casting this in the framework of an existing scale and rotational invariance recognition technology: SIFT. By exploring the statistical representations of the local variation, it is possible to represent and match range images of human faces. This can be achieved by extracting unique mathematical keys known as feature descriptors, from the various automatically generated stable keypoint locations of the range images, thereby capturing the local information of the distributions of the mixes of surface types and their orientations simultaneously. Keypoints are generated through scale-space approach, where the (x,y) location and the appropriate scale (sigma) are detected. In order to achieve invariance to in-plane viewpoint rotational changes, a consistent canonical orientation is assigned to each keypoint and the sampling patch is rotated to this canonical orientation. The mixes of surface types, derived using the shape index, and the image gradient orientations are extracted from each sampling patch by placing nine overlapping Gaussian sub-regions over the measurement aperture. Each of the nine regions is overlapped by one standard deviation in order to minimise the occurrence of spatial aliasing during the sampling stages and to provide a better continuity within the descriptor. Moreover, surface normals can be computed from each of the keypoint location, allowing the local 3D pose to be estimated and corrected within the feature descriptors since the orientations in which the images were captured are unknown a priori. As a result, the formulated feature descriptors have strong discriminative power and are stable to rotational changes

    Magnetic Reconnection As An Element Of Turbulence

    Get PDF
    In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD), it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a). In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature
    • …
    corecore