6,449 research outputs found

    Scalable Inference of Customer Similarities from Interactions Data using Dirichlet Processes

    Get PDF
    Under the sociological theory of homophily, people who are similar to one another are more likely to interact with one another. Marketers often have access to data on interactions among customers from which, with homophily as a guiding principle, inferences could be made about the underlying similarities. However, larger networks face a quadratic explosion in the number of potential interactions that need to be modeled. This scalability problem renders probability models of social interactions computationally infeasible for all but the smallest networks. In this paper we develop a probabilistic framework for modeling customer interactions that is both grounded in the theory of homophily, and is flexible enough to account for random variation in who interacts with whom. In particular, we present a novel Bayesian nonparametric approach, using Dirichlet processes, to moderate the scalability problems that marketing researchers encounter when working with networked data. We find that this framework is a powerful way to draw insights into latent similarities of customers, and we discuss how marketers can apply these insights to segmentation and targeting activities

    Sequences of purchases in credit card data reveal life styles in urban populations

    Full text link
    Zipf-like distributions characterize a wide set of phenomena in physics, biology, economics and social sciences. In human activities, Zipf-laws describe for example the frequency of words appearance in a text or the purchases types in shopping patterns. In the latter, the uneven distribution of transaction types is bound with the temporal sequences of purchases of individual choices. In this work, we define a framework using a text compression technique on the sequences of credit card purchases to detect ubiquitous patterns of collective behavior. Clustering the consumers by their similarity in purchases sequences, we detect five consumer groups. Remarkably, post checking, individuals in each group are also similar in their age, total expenditure, gender, and the diversity of their social and mobility networks extracted by their mobile phone records. By properly deconstructing transaction data with Zipf-like distributions, this method uncovers sets of significant sequences that reveal insights on collective human behavior.Comment: 30 pages, 26 figure

    Unveiling E-bike potential for commuting trips from GPS traces

    Get PDF
    Common goals of sustainable mobility approaches are to reduce the need for travel, to facilitate modal shifts, to decrease trip distances and to improve energy efficiency in the transportation systems. Among these issues, modal shift plays an important role for the adoption of vehicles with fewer or zero emissions. Nowadays, the electric bike (e-bike) is becoming a valid alternative to cars in urban areas. However, to promote modal shift, a better understanding of the mobility behaviour of e-bike users is required. In this paper, we investigate the mobility habits of e-bikers using GPS data collected in Belgium from 2014 to 2015. By analysing more than 10,000 trips, we provide insights about e-bike trip features such as: distance, duration and speed. In addition, we offer a deep look into which routes are preferred by bike owners in terms of their physical characteristics and how weather influences e-bike usage. Results show that trips with higher travel distances are performed during working days and are correlated with higher average speeds. Usage patterns extracted from our data set also indicate that e-bikes are preferred for commuting (home-work) and business (work related) trips rather than for recreational trips

    A review of urban computing for mobile phone traces

    Get PDF
    In this work, we present three classes of methods to extract information from triangulated mobile phone signals, and describe applications with different goals in spatiotemporal analysis and urban modeling. Our first challenge is to relate extracted information from phone records (i.e., a set of time-stamped coordinates estimated from signal strengths) with destinations by each of the million anonymous users. By demonstrating a method that converts phone signals into small grid cell destinations, we present a framework that bridges triangulated mobile phone data with previously established findings obtained from data at more coarse-grained resolutions (such as at the cell tower or census tract levels). In particular, this method allows us to relate daily mobility networks, called motifs here, with trip chains extracted from travel diary surveys. Compared with existing travel demand models mainly relying on expensive and less-frequent travel survey data, this method represents an advantage for applying ubiquitous mobile phone data to urban and transportation modeling applications. Second, we present a method that takes advantage of the high spatial resolution of the triangulated phone data to infer trip purposes by examining semantic-enriched land uses surrounding destinations in individual's motifs. In the final section, we discuss a portable computational architecture that allows us to manage and analyze mobile phone data in geospatial databases, and to map mobile phone trips onto spatial networks such that further analysis about flows and network performances can be done. The combination of these three methods demonstrate the state-of-the-art algorithms that can be adapted to triangulated mobile phone data for the context of urban computing and modeling applications.BMW GroupAustrian Institute of TechnologySingapore. National Research FoundationMassachusetts Institute of Technology. School of EngineeringMassachusetts Institute of Technology. Dept. of Urban Studies and PlanningSingapore-MIT Alliance for Research and Technology (Center for Future Mobility
    • …
    corecore