566 research outputs found

    VRpursuits: Interaction in Virtual Reality Using Smooth Pursuit Eye Movements

    Get PDF
    Gaze-based interaction using smooth pursuit eye movements (Pursuits) is attractive given that it is intuitive and overcomes the Midas touch problem. At the same time, eye tracking is becoming increasingly popular for VR applications. While Pursuits was shown to be effective in several interaction contexts, it was never explored in-depth for VR before. In a user study (N=26), we investigated how parameters that are specific to VR settings influence the performance of Pursuits. For example, we found that Pursuits is robust against different sizes of virtual 3D targets. However performance improves when the trajectory size (e.g., radius) is larger, particularly if the user is walking while interacting. While walking, selecting moving targets via Pursuits is generally feasible albeit less accurate than when stationary. Finally, we discuss the implications of these findings and the potential of smooth pursuits for interaction in VR by demonstrating two sample use cases: 1) gaze-based authentication in VR, and 2) a space meteors shooting game

    Understanding the use of Virtual Reality in Marketing: a text mining-based review

    Get PDF
    The current study intends to highlight the most relevant studies in simulated realities with special attention to VR and marketing, showing how studies have evolved over time and discussing the findings. A text-mining approach using a Bayesian statistical topic model called latent Dirichlet allocation is employed to conduct a comprehensive analysis of 150 articles from 115 journals, all indexed in Web of Science. The findings reveal seven relevant topics, as well as the number of articles published over time, the authors most cited in VR papers and the leading journals in each topic. The article also provides theoretical and practical implications and suggestions for further research.info:eu-repo/semantics/acceptedVersio

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    Study of Human Hand-Eye Coordination Using Machine Learning Techniques in a Virtual Reality Setup

    Get PDF
    Theories of visually guided action are characterized as closed-loop control in the presence of reliable sources of visual information, and predictive control to compensate for visuomotor delay and temporary occlusion. However, prediction is not well understood. To investigate, a series of studies was designed to characterize the role of predictive strategies in humans as they perform visually guided actions, and to guide the development of computational models that capture these strategies. During data collection, subjects were immersed in a virtual reality (VR) system and were tasked with using a paddle to intercept a virtual ball. To force subjects into a predictive mode of control, the ball was occluded or made invisible for a portion of its 3D parabolic trajectory. The subjects gaze, hand and head movements were recorded during the performance. To improve the quality of gaze estimation, new algorithms were developed for the measurement and calibration of spatial and temporal errors of an eye tracking system. The analysis focused on the subjects gaze and hand movements reveal that, when the temporal constraints of the task did not allow the subjects to use closed-loop control, they utilized a short-term predictive strategy. Insights gained through behavioral analysis were formalized into computational models of visual prediction using machine learning techniques. In one study, LSTM recurrent neural networks were utilized to explain how information is integrated and used to guide predictive movement of the hand and eyes. In a subsequent study, subject data was used to train an inverse reinforcement learning (IRL) model that captures the full spectrum of strategies from closed-loop to predictive control of gaze and paddle placement. A comparison of recovered reward values between occlusion and no-occlusion conditions revealed a transition from online to predictive control strategies within a single course of action. This work has shed new insights on predictive strategies that guide our eye and hand movements

    The distracted robot: what happens when artificial agents behave like us

    Get PDF
    In everyday life, we are frequently exposed to different smart technologies. From our smartphones to avatars in computer games, and soon perhaps humanoid robots, we are surrounded by artificial agents created to interact with us. Already during the design phase of an artificial agent, engineers often endow it with functions aimed to promote the interaction and engagement with it, ranging from its \u201ccommunicative\u201d abilities to the movements it produces. Still, whether an artificial agent that can behave like a human could boost the spontaneity and naturalness of interaction is still an open question. Even during the interaction with conspecifics, humans rely partially on motion cues when they need to infer the mental states underpinning behavior. Similar processes may be activated during the interaction with embodied artificial agents, such as humanoid robots. At the same time, a humanoid robot that can faithfully reproduce human-like behavior may undermine the interaction, causing a shift in attribution: from being endearing to being uncanny. Furthermore, it is still not clear whether individual biases and prior knowledge related to artificial agents can override perceptual evidence of human-like traits. A relatively new area of research emerged in the context of investigating individuals\u2019 reactions towards robots, widely referred to as Human-Robot Interaction (HRI). HRI is a multidisciplinary community that comprises psychologists, neuroscientists, philosophers as well as roboticists, and engineers. However, HRI research has been often based on explicit measures (i.e. self-report questionnaires, a-posteriori interviews), while more implicit social cognitive processes that are elicited during the interaction with artificial agents took second place behind more qualitative and anecdotal results. The present work aims to demonstrate the usefulness of combining the systematic approach of cognitive neuroscience with HRI paradigms to further investigate social cognition processes evoked by artificial agents. Thus, this thesis aimed at exploring human sensitivity to anthropomorphic characteristics of a humanoid robot's (i.e. iCub robot) behavior, based on motion cues, under different conditions of prior knowledge. To meet this aim, we manipulated the human-likeness of the behaviors displayed by the robot and the explicitness of instructions provided to the participants, in both screen-based and real-time interaction scenarios. Furthermore, we explored some of the individual differences that affect general attitudes towards robots, and the attribution of human-likeness consequently

    Gaze Behaviour on Interacted Objects during Hand Interaction in Virtual Reality for Eye Tracking Calibration

    Get PDF
    In this paper, we investigate the probability and timing of attaining gaze fixations on interacted objects during hand interaction in virtual reality, with the main purpose for implicit and continuous eye tracking re-calibration. We conducted an evaluation with 15 participants in which their gaze was recorded while interacting with virtual objects. The data was analysed to find factors influencing the probability of fixations at different phases of interaction for different object types. The results indicate that 1) interacting with stationary objects may be favourable in attaining fixations to moving objects, 2) prolonged and precision-demanding interactions positively influences the probability to attain fixations, 3) performing multiple interactions simultaneously can negatively impact the probability of fixations, and 4) feedback can initiate and end fixations on objects
    corecore