3,537 research outputs found

    Efficient memory management in video on demand servers

    Get PDF
    In this article we present, analyse and evaluate a new memory management technique for video-on-demand servers. Our proposal, Memory Reservation Per Storage Device (MRPSD), relies on the allocation of a fixed, small number of memory buffers per storage device. Selecting adequate scheduling algorithms, information storage strategies and admission control mechanisms, we demonstrate that MRPSD is suited for the deterministic service of variable bit rate streams to intolerant clients. MRPSD allows large memory savings compared to traditional memory management techniques, based on the allocation of a certain amount of memory per client served, without a significant performance penaltyPublicad

    Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering

    Get PDF
    We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad

    A hybrid neuro--wavelet predictor for QoS control and stability

    Full text link
    For distributed systems to properly react to peaks of requests, their adaptation activities would benefit from the estimation of the amount of requests. This paper proposes a solution to produce a short-term forecast based on data characterising user behaviour of online services. We use \emph{wavelet analysis}, providing compression and denoising on the observed time series of the amount of past user requests; and a \emph{recurrent neural network} trained with observed data and designed so as to provide well-timed estimations of future requests. The said ensemble has the ability to predict the amount of future user requests with a root mean squared error below 0.06\%. Thanks to prediction, advance resource provision can be performed for the duration of a request peak and for just the right amount of resources, hence avoiding over-provisioning and associated costs. Moreover, reliable provision lets users enjoy a level of availability of services unaffected by load variations

    Maximizing the number of users in an interactive video-on-demand system

    Get PDF
    Video prefetching is a technique that has been proposed for the transmission of variable-bit-rate (VBR) videos over packet-switched networks. The objective of these protocols is to prefetch future frames at the customers' set-top box (STB) during light load periods. Experimental results have shown that video prefetching is very effective and it achieves much higher network utilization (and potentially larger number of simultaneous connections) than the traditional video smoothing schemes. The previously proposed prefetching algorithms, however, can only be efficiently implemented when there is one centralized server. In a distributed environment there is a large degradation in their performance. In this paper we introduce a new scheme that utilizes smoothing along with prefetching, to overcome the problem of distributed prefetching. We will show that our scheme performs almost as well as the centralized prefetching protocol even though it is implemented in a distributed environment. In addition, we will introduce a call admission control algorithm for a fully interactive Video-on-Demand (VoD) system that utilizes this concept of distributed video prefetching. Using the theory of effective bandwidths, we will develop an admission control algorithm for new requests, based on the user's viewing behavior and the required Quality of Service (QoS).published_or_final_versio

    Better Admission Control and Disk Scheduling for Multimedia Applications

    Get PDF
    General purpose operating systems have been designed to provide fast, loss-free disk service to all applications. However, multimedia applications are capable of tolerating some data loss, but are very sensitive to variation in disk service timing. Present research efforts to handle multimedia applications assume pessimistic disk behaviour when deciding to admit new multimedia connections so as not to violate the real-time application constraints. However, since multimedia applications are ``soft\u27 real-time applications that can tolerate some loss, we propose an optimistic scheme for admission control which uses average case values for disk access. Typically, disk scheduling mechanisms for multimedia applications reduce disk access times by only trying to minimize movement to subsequent blocks after sequencing based on Earliest Deadline First. We propose to implement a disk scheduling algorithm that uses knowledge of the media stored and permissible loss and jitter for each client, in addition to the physical parameters used by the other scheduling algorithms. We will evaluate our approach by implementing our admission control policy and disk scheduling algorithm in Linux and measuring the quality of various multimedia streams. If successful, the contributions of this thesis are the development of new admission control and flexible disk scheduling algorithm for improved multimedia quality of service

    Stochastic user behaviour modelling and network simulation for resource management in cooperation with mobile telecommunications and broadcast networks

    Get PDF
    The latest generations of telecommunications networks have been designed to deliver higher data rates than widely used second generation telecommunications networks, providing flexible communication capabilities that can deliver high quality video images. However, these new generations of telecommunications networks are interference limited, impairing their performance in cases of heavy traffic and high usage. This limits the services offered by a telecommunications network operator to those that the operator is confident their network can meet the demand for. One way to lift this constraint would be for the mobile telecommunications network operator to obtain the cooperation of a broadcast network operator so that during periods when the demand for the service is too high for the telecommunications network to meet, the service can be transferred to the broadcast network. In the United Kingdom the most recent telecommunications networks on the market are third generation UMTS networks while the terrestrial digital broadcast networks are DVB-T networks. This paper proposes a way for UMTS network operators to forecast the traffic associated with high demand services intended to be deployed on the UMTS network and when demand requires to transfer it to a cooperating DVB-T network. The paper aims to justify to UMTS network operators the use of a DVB-T network as a support for a UMTS network by clearly showing how using a DVB-T network to support it can increase the revenue generated by their network

    Joint in-network video rate adaptation and measurement-based admission control: algorithm design and evaluation

    Get PDF
    The important new revenue opportunities that multimedia services offer to network and service providers come with important management challenges. For providers, it is important to control the video quality that is offered and perceived by the user, typically known as the quality of experience (QoE). Both admission control and scalable video coding techniques can control the QoE by blocking connections or adapting the video rate but influence each other's performance. In this article, we propose an in-network video rate adaptation mechanism that enables a provider to define a policy on how the video rate adaptation should be performed to maximize the provider's objective (e.g., a maximization of revenue or QoE). We discuss the need for a close interaction of the video rate adaptation algorithm with a measurement based admission control system, allowing to effectively orchestrate both algorithms and timely switch from video rate adaptation to the blocking of connections. We propose two different rate adaptation decision algorithms that calculate which videos need to be adapted: an optimal one in terms of the provider's policy and a heuristic based on the utility of each connection. Through an extensive performance evaluation, we show the impact of both algorithms on the rate adaptation, network utilisation and the stability of the video rate adaptation. We show that both algorithms outperform other configurations with at least 10 %. Moreover, we show that the proposed heuristic is about 500 times faster than the optimal algorithm and experiences only a performance drop of approximately 2 %, given the investigated video delivery scenario
    • 

    corecore