1,831 research outputs found

    Contention management for distributed data replication

    Get PDF
    PhD ThesisOptimistic replication schemes provide distributed applications with access to shared data at lower latencies and greater availability. This is achieved by allowing clients to replicate shared data and execute actions locally. A consequence of this scheme raises issues regarding shared data consistency. Sometimes an action executed by a client may result in shared data that may conflict and, as a consequence, may conflict with subsequent actions that are caused by the conflicting action. This requires a client to rollback to the action that caused the conflicting data, and to execute some exception handling. This can be achieved by relying on the application layer to either ignore or handle shared data inconsistencies when they are discovered during the reconciliation phase of an optimistic protocol. Inconsistency of shared data has an impact on the causality relationship across client actions. In protocol design, it is desirable to preserve the property of causality between different actions occurring across a distributed application. Without application level knowledge, we assume an action causes all the subsequent actions at the same client. With application knowledge, we can significantly ease the protocol burden of provisioning causal ordering, as we can identify which actions do not cause other actions (even if they precede them). This, in turn, makes possible the client’s ability to rollback to past actions and to change them, without having to alter subsequent actions. Unfortunately, increased instances of application level causal relations between actions lead to a significant overhead in protocol. Therefore, minimizing the rollback associated with conflicting actions, while preserving causality, is seen as desirable for lower exception handling in the application layer. In this thesis, we present a framework that utilizes causality to create a scheduler that can inform a contention management scheme to reduce the rollback associated with the conflicting access of shared data. Our framework uses a backoff contention management scheme to provide causality preserving for those optimistic replication systems with high causality requirements, without the need for application layer knowledge. We present experiments which demonstrate that our framework reduces clients’ rollback and, more importantly, that the overall throughput of the system is improved when the contention management is used with applications that require causality to be preserved across all actions

    MDCC: Multi-Data Center Consistency

    Get PDF
    Replicating data across multiple data centers not only allows moving the data closer to the user and, thus, reduces latency for applications, but also increases the availability in the event of a data center failure. Therefore, it is not surprising that companies like Google, Yahoo, and Netflix already replicate user data across geographically different regions. However, replication across data centers is expensive. Inter-data center network delays are in the hundreds of milliseconds and vary significantly. Synchronous wide-area replication is therefore considered to be unfeasible with strong consistency and current solutions either settle for asynchronous replication which implies the risk of losing data in the event of failures, restrict consistency to small partitions, or give up consistency entirely. With MDCC (Multi-Data Center Consistency), we describe the first optimistic commit protocol, that does not require a master or partitioning, and is strongly consistent at a cost similar to eventually consistent protocols. MDCC can commit transactions in a single round-trip across data centers in the normal operational case. We further propose a new programming model which empowers the application developer to handle longer and unpredictable latencies caused by inter-data center communication. Our evaluation using the TPC-W benchmark with MDCC deployed across 5 geographically diverse data centers shows that MDCC is able to achieve throughput and latency similar to eventually consistent quorum protocols and that MDCC is able to sustain a data center outage without a significant impact on response times while guaranteeing strong consistency

    Real-time databases : an overview

    Get PDF

    Administrative Profiles Unit and Multi-Sessions Management Scheme for IPBrick Private Cloud

    Get PDF
    IPBrick solution for the Private Cloud has some limitations which can be challenged in future by its competitors in the market. The administrative access to the web interface of an IPBrick server is restricted to one user who manages everything by using a given set of features and services. The existing solution also does not support Multi-Sessions Management due to which multiple update operations can't be applied on the database simultaneously and if it is attempted then it can have adverse affects on the consistency of data stored in the Database. The aim of this thesis is to develop features like Administrative Profiles and Multi-Sessions Management for the betterment of IPBrick Solution

    Scaling In-Memory databases on multicores

    Get PDF
    Current computer systems have evolved from featuring only a single processing unit and limited RAM, in the order of kilobytes or few megabytes, to include several multicore processors, o↵ering in the order of several tens of concurrent execution contexts, and have main memory in the order of several tens to hundreds of gigabytes. This allows to keep all data of many applications in the main memory, leading to the development of inmemory databases. Compared to disk-backed databases, in-memory databases (IMDBs) are expected to provide better performance by incurring in less I/O overhead. In this dissertation, we present a scalability study of two general purpose IMDBs on multicore systems. The results show that current general purpose IMDBs do not scale on multicores, due to contention among threads running concurrent transactions. In this work, we explore di↵erent direction to overcome the scalability issues of IMDBs in multicores, while enforcing strong isolation semantics. First, we present a solution that requires no modification to either database systems or to the applications, called MacroDB. MacroDB replicates the database among several engines, using a master-slave replication scheme, where update transactions execute on the master, while read-only transactions execute on slaves. This reduces contention, allowing MacroDB to o↵er scalable performance under read-only workloads, while updateintensive workloads su↵er from performance loss, when compared to the standalone engine. Second, we delve into the database engine and identify the concurrency control mechanism used by the storage sub-component as a scalability bottleneck. We then propose a new locking scheme that allows the removal of such mechanisms from the storage sub-component. This modification o↵ers performance improvement under all workloads, when compared to the standalone engine, while scalability is limited to read-only workloads. Next we addressed the scalability limitations for update-intensive workloads, and propose the reduction of locking granularity from the table level to the attribute level. This further improved performance for intensive and moderate update workloads, at a slight cost for read-only workloads. Scalability is limited to intensive-read and read-only workloads. Finally, we investigate the impact applications have on the performance of database systems, by studying how operation order inside transactions influences the database performance. We then propose a Read before Write (RbW) interaction pattern, under which transaction perform all read operations before executing write operations. The RbW pattern allowed TPC-C to achieve scalable performance on our modified engine for all workloads. Additionally, the RbW pattern allowed our modified engine to achieve scalable performance on multicores, almost up to the total number of cores, while enforcing strong isolation

    Diverse intrusion-tolerant database replication

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2012A combinação da replicação de bases de dados com mecanismos de tolerância a falhas bizantinas ainda é um campo de pesquisa recente com projetos a surgirem nestes últimos anos. No entanto, a maioria dos protótipos desenvolvidos ou se focam em problemas muito específicos, ou são baseados em suposições que são muito difíceis de garantir numa situação do mundo real, como por exemplo ter um componente confiável. Nesta tese apresentamos DivDB, um sistema de replicação de bases de dados diverso e tolerante a intrusões. O sistema está desenhado para ser incorporado dentro de um driver JDBC, o qual irá abstrair o utilizador de qualquer complexidade adicional dos mecanismos de tolerância a falhas bizantinas. O DivDB baseia-se na combinação de máquinas de estados replicadas com um algoritmo de processamento de transações, a fim de melhorar o seu desempenho. Para além disso, no DivDB é possível ligar cada réplica a um sistema de gestão de base de dados diferente, proporcionando assim diversidade ao sistema. Propusemos, resolvemos e implementamos três problemas em aberto, existentes na conceção de um sistema de gestão de base de dados replicado: autenticação, processamento de transações e transferência de estado. Estas características torna o DivDB exclusivo, pois é o único sistema que compreende essas três funcionalidades implementadas num sistema de base de dados replicado. A nossa implementação é suficientemente robusta para funcionar de forma segura num simples sistema de processamento de transações online. Para testar isso, utilizou-se o TPC-C, uma ferramenta de benchmarking que simula esse tipo de ambientes.The combination of database replication with Byzantine fault tolerance mechanism is a recent field of research with projects appearing in the last few years. However most of the prototypes produced are either focused on very specific problems or are based on assumptions that are very hard to accomplish in a real world scenario (e.g., trusted component). In this thesis we present DivDB, a Diverse Intrusion-Tolerant Database Replication system. It is designed to be incorporated inside a JDBC driver so that it abstracts the user from any added complexity from Byzantine Fault Tolerance mechanism. DivDB is based in State Machine Replication combined with a transaction handling algorithm in order to enhance its performance. DivDB is also able to have different database systems connected at each replica, enabling to achieve diversity. We proposed, solved and implemented three open problems in the design of a replicated database system: authentication, transaction handling and state-transfer. This makes DivDB unique since it is the only system that comprises all these three features in a single database replication system. Our implementation is robust enough to operate reliably in a simple Online Transaction Processing system. To test that, we used TPC-C, a benchmark tool that simulates that kind of environments

    A Transaction Model for Mobile Computing

    Get PDF
    We introduce a prewrite operation before a write operation in a mobile transaction to improve data availability. A prewrite operation does not update the state of a data object but only makes visible the value that the data object will have after the commit of the transaction. Once the transaction has read all the values and declares all the prewrites, it can precommit at a mobile host. The remaining transaction\u27s execution is shifted to the stationary host. Writes on a database consume both time and resources at the stationary host and are therefore delayed. A pre-committed transaction\u27s prewrite values are made visible both at mobile and stationary hosts before the final commit of the transaction. This increases data availability during frequent disconnection common in mobile computing. Since the expensive part of the transaction execution is shifted to the stationary host, it reduces the computing expenses at the mobile hos
    • …
    corecore