50,943 research outputs found

    Thread-Modular Static Analysis for Relaxed Memory Models

    Full text link
    We propose a memory-model-aware static program analysis method for accurately analyzing the behavior of concurrent software running on processors with weak consistency models such as x86-TSO, SPARC-PSO, and SPARC-RMO. At the center of our method is a unified framework for deciding the feasibility of inter-thread interferences to avoid propagating spurious data flows during static analysis and thus boost the performance of the static analyzer. We formulate the checking of interference feasibility as a set of Datalog rules which are both efficiently solvable and general enough to capture a range of hardware-level memory models. Compared to existing techniques, our method can significantly reduce the number of bogus alarms as well as unsound proofs. We implemented the method and evaluated it on a large set of multithreaded C programs. Our experiments showthe method significantly outperforms state-of-the-art techniques in terms of accuracy with only moderate run-time overhead.Comment: revised version of the ESEC/FSE 2017 pape

    Deadlock detection of Java Bytecode

    Full text link
    This paper presents a technique for deadlock detection of Java programs. The technique uses typing rules for extracting infinite-state abstract models of the dependencies among the components of the Java intermediate language -- the Java bytecode. Models are subsequently analysed by means of an extension of a solver that we have defined for detecting deadlocks in process calculi. Our technique is complemented by a prototype verifier that also covers most of the Java features.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Trace Spaces: an Efficient New Technique for State-Space Reduction

    Get PDF
    State-space reduction techniques, used primarily in model-checkers, all rely on the idea that some actions are independent, hence could be taken in any (respective) order while put in parallel, without changing the semantics. It is thus not necessary to consider all execution paths in the interleaving semantics of a concurrent program, but rather some equivalence classes. The purpose of this paper is to describe a new algorithm to compute such equivalence classes, and a representative per class, which is based on ideas originating in algebraic topology. We introduce a geometric semantics of concurrent languages, where programs are interpreted as directed topological spaces, and study its properties in order to devise an algorithm for computing dihomotopy classes of execution paths. In particular, our algorithm is able to compute a control-flow graph for concurrent programs, possibly containing loops, which is "as reduced as possible" in the sense that it generates traces modulo equivalence. A preliminary implementation was achieved, showing promising results towards efficient methods to analyze concurrent programs, with very promising results compared to partial-order reduction techniques

    A Geometric Approach to the Problem of Unique Decomposition of Processes

    Full text link
    This paper proposes a geometric solution to the problem of prime decomposability of concurrent processes first explored by R. Milner and F. Moller in [MM93]. Concurrent programs are given a geometric semantics using cubical areas, for which a unique factorization theorem is proved. An effective factorization method which is correct and complete with respect to the geometric semantics is derived from the factorization theorem. This algorithm is implemented in the static analyzer ALCOOL.Comment: 15 page

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin

    Efficient and Reasonable Object-Oriented Concurrency

    Full text link
    Making threaded programs safe and easy to reason about is one of the chief difficulties in modern programming. This work provides an efficient execution model for SCOOP, a concurrency approach that provides not only data race freedom but also pre/postcondition reasoning guarantees between threads. The extensions we propose influence both the underlying semantics to increase the amount of concurrent execution that is possible, exclude certain classes of deadlocks, and enable greater performance. These extensions are used as the basis an efficient runtime and optimization pass that improve performance 15x over a baseline implementation. This new implementation of SCOOP is also 2x faster than other well-known safe concurrent languages. The measurements are based on both coordination-intensive and data-manipulation-intensive benchmarks designed to offer a mixture of workloads.Comment: Proceedings of the 10th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE '15). ACM, 201

    Polynomial-Time Fence Insertion for Structured Programs

    Get PDF
    To enhance performance, common processors feature relaxed memory models that reorder instructions. However, the correctness of concurrent programs is often dependent on the preservation of the program order of certain instructions. Thus, the instruction set architectures offer memory fences. Using fences is a subtle task with performance and correctness implications: using too few can compromise correctness and using too many can hinder performance. Thus, fence insertion algorithms that given the required program orders can automatically find the optimum fencing can enhance the ease of programming, reliability, and performance of concurrent programs. In this paper, we consider the class of programs with structured branch and loop statements and present a greedy and polynomial-time optimum fence insertion algorithm. The algorithm incrementally reduces fence insertion for a control-flow graph to fence insertion for a set of paths. In addition, we show that the minimum fence insertion problem with multiple types of fence instructions is NP-hard even for straight-line programs
    corecore