2,065 research outputs found

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    Scala Server Faces

    Get PDF
    Progress in the Java language has been slow over the last few years. Scala is emerging as one of the probable successors for Java with features such as type inference, higher order functions, closure support and sequence comprehensions. This allows object-oriented yet concise code to be written using Scala. While Java based MVC frameworks are still prevalent, Scala based frameworks along with Ruby on Rails, Django and PHP are emerging as competitors. Scala has a web framework called Lift which has made an attempt to borrow the advantages of other frameworks while keeping code concise. Since Sun’s MVC framework, Java Server Faces 2.0 and its future versions seem to be heading in a reasonably progressive direction; I have developed a framework which attempts to overcome its limitations. I call such a framework ―Scala Server Faces‖. This framework provides a way of writing Java EE applications in Scala yet borrow from the concept of ―convention over configuration‖ followed by rival web frameworks. Again, an Eclipse tool is provided to make the programmer\u27s task of writing code on the popular Eclipse platform. Scala Server Faces, the framework and the tool allows the programmer to write enterprise web applications in Scala by providing features such as templating support, CRUD screen generation for database model objects, an Ant script to help deployment and integration with the Glassfish Application Server

    A framework for FPGA functional units in high performance computing

    Get PDF
    FPGAs make it practical to speed up a program by defining hardware functional units that perform calculations faster than can be achieved in software. Specialised digital circuits avoid the overhead of executing sequences of instructions, and they make available the massive parallelism of the components. The FPGA operates as a coprocessor controlled by a conventional computer. An application that combines software with hardware in this way needs an interface between a communications port to the processor and the signals connected to the functional units. We present a framework that supports the design of such systems. The framework consists of a generic controller circuit defined in VHDL that can be configured by the user according to the needs of the functional units and the I/O channel. The controller contains a register file and a pipelined programmable register transfer machine, and it supports the design of both stateless and stateful functional units. Two examples are described: the implementation of a set of basic stateless arithmetic functional units, and the implementation of a stateful algorithm that exploits circuit parallelism

    Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems

    Get PDF
    An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation
    corecore