10,230 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Generation asset planning under uncertainty.

    Get PDF
    With the introduction of competition in the electric power industry, generation asset planning must change. In this changed environment, energy companies must be able to capture the extrinsic value of their asset operations and long-term managerial flexibility for sound planning decisions. This dissertation presents a new formulation for the generation asset planning problem under market uncertainty, in which short-term operational and long-term coupling constraints associated with investment decisions are simultaneously reflected in the planning process

    Effects of fuel cost uncertainty on optimal energy flows in U.S.

    Get PDF
    The research is motivated by the need for economic efficiency and risk management in the national electric system. Stochastic costs of natural gas are introduced in a generalized network flow model of the integrated power energy system to explore the effects of uncertain fuel costs on the optimal energy flows in U.S. The fuel costs are modeled as discretely distributed random variables and a rolling two-stage approach is applied to solve the stochastic recourse problem. All the data are derived from publicly available information for the year 2002. The natural gas price forecasts by the Energy Information Administration are adapted to generate scenarios that are considered in the stochastic problem. Compared to the expected value solution from the deterministic model, the recourse problem solution obtained from the stochastic model has higher total cost, lower natural gas consumption and less subregional power trade but a flow mix which is closer to the 2002 real data. Surprisingly, increasing the uncertainty level of the scenarios leads to a recourse problem solution with slightly lower total cost but this effect may be distributed to the inaccuracy of the forecasts. The comparison demonstrates the stochastic model\u27s capability of forecasting energy flows. The stochastic model assists decision makers to better understand how the uncertain fuel costs would affect future flows within the national electric energy system

    Generation expansion planning optimisation with renewable energy integration: A review

    Get PDF
    Generation expansion planning consists of finding the optimal long-term plan for the construction of new generation capacity subject to various economic and technical constraints. It usually involves solving a large-scale, non-linear discrete and dynamic optimisation problem in a highly constrained and uncertain environment. Traditional approaches to capacity planning have focused on achieving a least-cost plan. During the last two decades however, new paradigms for expansion planning have emerged that are driven by environmental and political factors. This has resulted in the formulation of multi-criteria approaches that enable power system planners to simultaneously consider multiple and conflicting objectives in the decision-making process. More recently, the increasing integration of intermittent renewable energy sources in the grid to sustain power system decarbonisation and energy security has introduced new challenges. Such a transition spawns new dynamics pertaining to the variability and uncertainty of these generation resources in determining the best mix. In addition to ensuring adequacy of generation capacity, it is essential to consider the operational characteristics of the generation sources in the planning process. In this paper, we first review the evolution of generation expansion planning techniques in the face of more stringent environmental policies and growing uncertainty. More importantly, we highlight the emerging challenges presented by the intermittent nature of some renewable energy sources. In particular, we discuss the power supply adequacy and operational flexibility issues introduced by variable renewable sources as well as the attempts made to address them. Finally, we identify important future research directions

    Electromechanical Dynamics of High Photovoltaic Power Grids

    Get PDF
    This dissertation study focuses on the impact of high PV penetration on power grid electromechanical dynamics. Several major aspects of power grid electromechanical dynamics are studied under high PV penetration, including frequency response and control, inter-area oscillations, transient rotor angle stability and electromechanical wave propagation.To obtain dynamic models that can reasonably represent future power systems, Chapter One studies the co-optimization of generation and transmission with large-scale wind and solar. The stochastic nature of renewables is considered in the formulation of mixed-integer programming model. Chapter Two presents the development procedures of high PV model and investigates the impact of high PV penetration on frequency responses. Chapter Three studies the impact of PV penetration on inter-area oscillations of the U.S. Eastern Interconnection system. Chapter Four presents the impacts of high PV on other electromechanical dynamic issues, including transient rotor angle stability and electromechanical wave propagation. Chapter Five investigates the frequency response enhancement by conventional resources. Chapter Six explores system frequency response improvement through real power control of wind and PV. For improving situation awareness and frequency control, Chapter Seven studies disturbance location determination based on electromechanical wave propagation. In addition, a new method is developed to generate the electromechanical wave propagation speed map, which is useful to detect system inertia distribution change. Chapter Eight provides a review on power grid data architectures for monitoring and controlling power grids. Challenges and essential elements of data architecture are analyzed to identify various requirements for operating high-renewable power grids and a conceptual data architecture is proposed. Conclusions of this dissertation study are given in Chapter Nine

    Homeostatic control : the utilitycustomer marketplace for electric power

    Get PDF
    A load management system is proposed in which the electric utility customer controls his on-site power demand to coincide with the lowest possible cost of power generation. Called Homeostatic Control, this method is founded on feedback between the customer and the utility and on customer independence. The utility has no control beyond the customer's meter. Computers located at the customer's site are continuously fed data on weather conditions, utility generating costs, and demand requirements for space conditioning, lighting, and appliances. The customer then directs the computer to schedule and control the power allotted for these functions. On-site generation by the customer can be incorporated in the system. It is argued that homeostatic control is technically feasible, that the level of control equipment sophistication can be adapted to the benefits received by the customer, that such a system would encourage the use of customer-site energy storage and energy conservation equipment, and that it represents a realistic method for allowing the customer to decide how he will use electric power during an era of increasing costs for power generation. (LCL

    Agent Based Control of Electric Power Systems with Distributed Generation

    Get PDF
    corecore