1,793 research outputs found

    A state-of-the-art review on the integration of Building Information Modeling (BIM) and Geographic Information System (GIS)

    Get PDF
    The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as "EEEF" criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration

    CityGML in the Integration of BIM and the GIS: Challenges and Opportunities

    Get PDF
    CityGML (City Geography Markup Language) is the most investigated standard in the integration of building information modeling (BIM) and the geographic information system (GIS), and it is essential for digital twin and smart city applications. The new CityGML 3.0 has been released for a while, but it is still not clear whether its new features bring new challenges or opportunities to this research topic. Therefore, the aim of this study is to understand the state of the art of CityGML in BIM/GIS integration and to investigate the potential influence of CityGML3.0 on BIM/GIS integration. To achieve this aim, this study used a systematic literature review approach. In total, 136 papers from Web of Science (WoS) and Scopus were collected, reviewed, and analyzed. The main findings of this review are as follows: (1) There are several challenging problems in the IFC-to-CityGML conversion, including LoD (Level of Detail) mapping, solid-to-surface conversion, and semantic mapping. (2) The ‘space’ concept and the new LoD concept in CityGML 3.0 can bring new opportunities to LoD mapping and solid-to-surface conversion. (3) The Versioning module and the Dynamizer module can add dynamic semantics to the CityGML. (4) Graph techniques and scan-to-BIM offer new perspectives for facilitating the use of CityG

    Bibliometric Maps of BIM and BIM in Universities: A Comparative Analysis

    Get PDF
    Building Information Modeling (BIM) is increasingly important in the architecture and engineering fields, and especially in the field of sustainability through the study of energy. This study performs a bibliometric study analysis of BIM publications based on the Scopus database during the whole period from 2003 to 2018. The aim was to establish a comparison of bibliometric maps of the building information model and BIM in universities. The analyzed data included 4307 records produced by a total of 10,636 distinct authors from 314 institutions. Engineering and computer science were found to be the main scientific fields involved in BIM research. Architectural design are the central theme keywords, followed by information theory and construction industry. The final stage of the study focuses on the detection of clusters in which global research in this field is grouped. The main clusters found were those related to the BIM cycle, including construction management, documentation and analysis, architecture and design, construction/fabrication, and operation and maintenance (related to energy or sustainability). However, the clusters of the last phases such as demolition and renovation are not present, which indicates that this field suntil needs to be further developed and researched. With regard to the evolution of research, it has been observed how information technologies have been integrated over the entire spectrum of internet of things (IoT). A final key factor in the implementation of the BIM is its inclusion in the curriculum of technical careers related to areas of construction such as civil engineering or architecture

    Construction safety and digital design: a review

    Get PDF
    As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safet

    A state-of-the-art review of built environment information modelling (BeIM)

    Get PDF
    Elements that constitute the built environment are vast and so are the independent systems developed to model its various aspects. Many of these systems have been developed under various assumptions and approaches to execute functions that are distinct, complementary or sometimes similar. Also, these systems are ever increasing in number and often assume similar nomenclatures and acronyms thereby exacerbating the challenges of understanding their peculiar functions, definitions and differences. The current societal demand to improve sustainability performance through collaboration, whole-systems and through-life thinking, is driving the need to integrate independent systems associated with different aspects and scales of the built environment to deliver smart solutions and services that improve the wellbeing of citizens. The contemporary object-oriented digitization of real world elements appears to provide a leeway for amalgamating modelling systems of various domains in the built environment which we termed as built environment information modelling (BeIM). These domains included Architecture, Engineering, Construction and Urban Planning and Design. Applications such as Building Information Modelling, Geographic Information Systems and 3D City Modelling systems are now being integrated for city modelling purposes. The various works directed at integrating these systems are examined revealing that current research efforts on integration fall into three categories: (1) data/file conversion systems, (2) semantic mapping systems and (3) the hybrid of both. The review outcome suggests that a good knowledge of these domains and how their respective systems operate is vital to pursuing holistic systems integration in the built environment

    BIM and GIS: WHEN PARAMETRIC MODELING MEETS GEOSPATIAL DATA

    Get PDF
    Geospatial data have a crucial role in several projects related to infrastructures and land management. GIS software are able to perform advanced geospatial analyses, but they lack several instruments and tools for parametric modelling typically available in BIM. At the same time, BIM software designed for buildings have limited tools to handle geospatial data. As things stand at the moment, BIM and GIS could appear as complementary solutions, notwithstanding research work is currently under development to ensure a better level of interoperability, especially at the scale of the building. On the other hand, the transition from the local (building) scale to the infrastructure (where geospatial data cannot be neglected) has already demonstrated that parametric modelling integrated with geoinformation is a powerful tool to simplify and speed up some phases of the design workflow. This paper reviews such mixed approaches with both simulated and real examples, demonstrating that integration is already a reality at specific scales, which are not dominated by "pure" GIS or BIM. The paper will also demonstrate that some traditional operations carried out with GIS software are also available in parametric modelling software for BIM, such as transformation between reference systems, DEM generation, feature extraction, and geospatial queries. A real case study is illustrated and discussed to show the advantage of a combined use of both technologies. BIM and GIS integration can generate greater usage of geospatial data in the AECOO (Architecture, Engineering, Construction, Owner and Operator) industry, as well as new solutions for parametric modelling with additional geoinformation

    Innovating the Construction Life Cycle through BIM/GIS Integration: A Review

    Get PDF
    The construction sector is in continuous evolution due to the digitalisation and integration into daily activities of the building information modelling approach and methods that impact on the overall life cycle. This study investigates the topic of BIM/GIS integration with the adoption of ontologies and metamodels, providing a critical analysis of the existing literature. Ontologies and metamodels share several similarities and could be combined for potential solutions to address BIM/GIS integration for complex tasks, such as asset management, where heterogeneous sources of data are involved. The research adopts a systematic literature review (SLR), providing a formal approach to retrieve scientific papers from dedicated online databases. The results found are then analysed, in order to describe the state of the art and suggest future research paths, which is useful for both researchers and practitioners. From the SLR, it emerged that several studies address ontologies as a promising way to overcome the semantic barriers of the BIM/GIS integration. On the other hand, metamodels (and MDE and MDA approaches, in general) are rarely found in relation to the integration topic. Moreover, the joint application of ontologies and metamodels for BIM/GIS applications is an unexplored field. The novelty of this work is the proposal of the joint application of ontologies and metamodels to perform BIM/GIS integration, for the development of software and systems for asset management

    THE IFC FILE FORMAT AS A MEANS OF INTEGRATING BIM AND GIS: THE CASE OF THE MANAGEMENT AND MAINTENANCE OF UNDERGROUND NETWORKS

    Get PDF
    Abstract. The construction sector is undergoing an important digital revolution. The integration between Building Information Modeling (BIM) and Geographical Information System (GIS) is a key component of this revolution and is increasingly discussed. Although benefits are already recognised, several challenges still remain. The purpose of this paper is to present the method proposed by the GEOBIMM project to overcome the existing barriers towards the integration between BIM and GIS domains and to present the first results applied to the maintenance of underground networks. The results are a set of guidelines essential for the integration of BIM files in GIS platforms within the GEOBIMM domain, to ensure: the appropriate geometric description of the elements; the correct georeferencing; the geospatial semantic and topological interoperability between the two systems; the appropriate definition of the information parameters. These pillars are further used to develop a guideline for planners and construction companies supporting them in developing compliant BIM models
    • 

    corecore