3,491 research outputs found

    Digital twins from smart manufacturing to smart cities: a survey

    Get PDF
    Digital twins are quickly becoming a popular tool in several domains, taking advantage of recent advancements in the Internet of Things, Machine Learning and Big Data, while being used by both the industry sector and the research community. In this paper, we review the current research landscape as regards digital twins in the field of smart cities, while also attempting to draw parallels with the application of digital twins in Industry 4.0. Although digital twins have received considerable attention in the Industrial Internet of Things domain, their utilization in smart cities has not been as popular thus far. We discuss here the open challenges in the field and argue that digital twins in smart cities should be treated differently and be considered as cyber-physical "systems of systems", due to the vastly different system size, complexity and requirements, when compared to other recent applications of digital twins. We also argue that researchers should utilize established tools and methods of the smart city community, such as co-creation, to better handle the specificities of this domain in practice.This work was supported in part by the Project ‘‘I3T—Innovative Application of Industrial Internet of Things (IIoT) in Smart Environments’’ (MIS 5002434) implemented under the ‘‘Action for the Strategic Development on the Research and Technological Sector,’’ funded by the Operational Programme ‘‘Competitiveness, Entrepreneurship and Innovation’’ (NSRF 2014–2020), and in part by Greece and the European Union (European Regional Development Fund)

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions

    Support for Technical Phases and Conceptual Model

    Get PDF
    Worldwide, many wheelchair users find it difficult to use or acquire a wheelchair that is appropriate for them, either because they do not have the necessary financial support or because they do not have access to trained healthcare professionals (HCPs), but they are essential for the correct provision of assistive products and user training. Consequently, although wheelchairs are designed to promote the well-being of many users, in many cases, they end up being abandoned or do not provide any benefit, with the chance of causing harm and potentially putting people in danger. This article proposes the creation and use of a Digital Twin (DT) of a Power Wheelchair (PWC) to promote the health of wheelchair users, by facilitating and improving the delivery of remote services by HCPs, as well as to include monitoring services to support timely maintenance. Specifically, a DT is a virtual counterpart that is seamlessly linked to a physical asset, both relying on data and information exchange for mirroring each other. Currently, DT is emerging and being applied to different areas as a promising approach to gather insightful data, which are shared between the physical and virtual worlds and facilitate the means to design, monitor, analyze, optimize, predict, and control physical entities. This article gives an overview of the Digital Twin concept, namely its definition, types, and properties, and seeks to synthesize the technologies and tools frequently used to enable Digital Twins; we also explain how a DT can be used in the technical phases of the PWC provision process and propose a conceptual model highlighting the use of an MDD approach benefiting from a Petri net formalism, which is presented to systematize the development of a PWC Dpublishersversionpublishe

    Digital twin based what-if simulation for energy management

    Get PDF
    The manufacturing sector is one of the largest energy consumers in the industrial world, being the energy consumption by the shop-floor equipment, e.g., robots, machines and AGVs (Autonomous Guided Vehicles), a major issue. The combination of energy-efficient technologies with intelligent and digital technologies can reduce energy consumption. The application of the digital twin concept in the energy efficiency field is a promising research topic, taking advantage of the Industry 4.0 technological developments. This paper presents a digital twin architecture for energy optimisation in manufacturing systems, particularly based on a what-if simulation model. The applicability of the proposed what-if simulation model within the digital twin is presented to promote the efficient energy management of AGVs in a battery pack assembly line case study.info:eu-repo/semantics/publishedVersio

    Blockchain-based Digital Twins:Research Trends, Issues, and Future Challenges

    Get PDF
    Industrial processes rely on sensory data for decision-making processes, risk assessment, and performance evaluation. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the dissemination of trustworthy data. For the physical data to be trustworthy, it needs to be cross validated through multiple sensor sources with overlapping fields of view. Cross-validated data can then be stored on the blockchain, to maintain its integrity and trustworthiness. Once trustworthy data is recorded on the blockchain, product lifecycle events can be fed into data-driven systems for process monitoring, diagnostics, and optimized control. In this regard, digital twins (DTs) can be leveraged to draw intelligent conclusions from data by identifying the faults and recommending precautionary measures ahead of critical events. Empowering DTs with blockchain in industrial use cases targets key challenges of disparate data repositories, untrustworthy data dissemination, and the need for predictive maintenance. In this survey, while highlighting the key benefits of using blockchain-based DTs, we present a comprehensive review of the state-of-the-art research results for blockchain-based DTs. Based on the current research trends, we discuss a trustworthy blockchain-based DTs framework. We also highlight the role of artificial intelligence in blockchain-based DTs. Furthermore, we discuss the current and future research and deployment challenges of blockchain-supported DTs that require further investigation.</p

    Big data analytics for intra-logistics process planning in the automotive sector

    Get PDF
    The manufacturing sector is facing an important stage with Industry 4.0. This paradigm shift impulses companies to embrace innovative technologies and to pursuit near-zero fault, near real-time reactivity, better traceability, and more predictability, while working to achieve cheaper product customization. The scenario presented addresses multiple intra-logistic processes of the automotive factory Volkswagen Autoeuropa, where different situations need to be addressed. The main obstacle is the absence of harmonized and integrated data flows between all stages of the intra-logistic process which leads to inefficiencies. The existence of data silos is heavily contributing to this situation, which makes the planning of intra-logistics processes a challenge. The objective of the work presented here, is to integrate big data and machine learning technologies over data generated by the several manufacturing systems present, and thus support the management and optimisation of warehouse, parts transportation, sequencing and point-of-fit areas. This will support the creation of a digital twin of the intra-logistics processes. Still, the end goal is to employ deep learning techniques to achieve predictive capabilities, all together with simulation, in order to optimize processes planning and equipment efficiency. The work presented on this thesis, is aligned with the European project BOOST 4.0, with the objective to drive big data technologies in manufacturing domain, focusing on the automotive use-case
    corecore