7,470 research outputs found

    A New Domain Decomposition Method for the Compressible Euler Equations

    Get PDF
    In this work we design a new domain decomposition method for the Euler equations in 2 dimensions. The basis is the equivalence via the Smith factorization with a third order scalar equation to whom we can apply an algorithm inspired from the Robin-Robin preconditioner for the convection-diffusion equation. Afterwards we translate it into an algorithm for the initial system and prove that at the continuous level and for a decomposition into 2 sub-domains, it converges in 2 iterations. This property cannot be preserved strictly at discrete level and for arbitrary domain decompositions but we still have numerical results which confirm a very good stability with respect to the various parameters of the problem (mesh size, Mach number, ....).Comment: Submitte

    Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries

    Get PDF
    Efficient transport algorithms are essential to the numerical resolution of incompressible fluid flow problems. Semi-Lagrangian methods are widely used in grid based methods to achieve this aim. The accuracy of the interpolation strategy then determines the properties of the scheme. We introduce a simple multi-stage procedure which can easily be used to increase the order of accuracy of a code based on multi-linear interpolations. This approach is an extension of a corrective algorithm introduced by Dupont \& Liu (2003, 2007). This multi-stage procedure can be easily implemented in existing parallel codes using a domain decomposition strategy, as the communications pattern is identical to that of the multi-linear scheme. We show how a combination of a forward and backward error correction can provide a third-order accurate scheme, thus significantly reducing diffusive effects while retaining a non-dispersive leading error term.Comment: 14 pages, 10 figure

    Towards a new generation of multi-dimensional stellar evolution models: development of an implicit hydrodynamic code

    Get PDF
    This paper describes the first steps of development of a new multidimensional time implicit code devoted to the study of hydrodynamical processes in stellar interiors. The code solves the hydrodynamical equations in spherical geometry and is based on the finite volume method. Radiation transport is taken into account within the diffusion approximation. Realistic equation of state and opacities are implemented, allowing the study of a wide range of problems characteristic of stellar interiors. We describe in details the numerical method and various standard tests performed to validate the method. We present preliminary results devoted to the description of stellar convection. We first perform a local simulation of convection in the surface layers of a A-type star model. This simulation is used to test the ability of the code to address stellar conditions and to validate our results, since they can be compared to similar previous simulations based on explicit codes. We then present a global simulation of turbulent convective motions in a cold giant envelope, covering 80% in radius of the stellar structure. Although our implicit scheme is unconditionally stable, we show that in practice there is a limitation on the time step which prevent the flow to move over several cells during a time step. Nevertheless, in the cold giant model we reach a hydro CFL number of 100. We also show that we are able to address flows with a wide range of Mach numbers (10^-3 < Ms< 0.5), which is impossible with an anelastic approach. Our first developments are meant to demonstrate that the use of an implicit scheme applied to a stellar evolution context is perfectly thinkable and to provide useful guidelines to optimise the development of an implicit multi-D hydrodynamical code.Comment: 21 pages, 18 figures, accepted for publication in A&
    • …
    corecore