129,201 research outputs found

    Motion Planning of Legged Robots

    Get PDF
    We study the problem of computing the free space F of a simple legged robot called the spider robot. The body of this robot is a single point and the legs are attached to the body. The robot is subject to two constraints: each leg has a maximal extension R (accessibility constraint) and the body of the robot must lie above the convex hull of its feet (stability constraint). Moreover, the robot can only put its feet on some regions, called the foothold regions. The free space F is the set of positions of the body of the robot such that there exists a set of accessible footholds for which the robot is stable. We present an efficient algorithm that computes F in O(n2 log n) time using O(n2 alpha(n)) space for n discrete point footholds where alpha(n) is an extremely slowly growing function (alpha(n) <= 3 for any practical value of n). We also present an algorithm for computing F when the foothold regions are pairwise disjoint polygons with n edges in total. This algorithm computes F in O(n2 alpha8(n) log n) time using O(n2 alpha8(n)) space (alpha8(n) is also an extremely slowly growing function). These results are close to optimal since Omega(n2) is a lower bound for the size of F.Comment: 29 pages, 22 figures, prelininar results presented at WAFR94 and IEEE Robotics & Automation 9

    Topology of quasiperiodic functions on the plane

    Full text link
    The article describes a topological theory of quasiperiodic functions on the plane. The development of this theory was started (in different terminology) by the Moscow topology group in early 1980s. It was motivated by the needs of solid state physics, as a partial (nongeneric) case of Hamiltonian foliations of Fermi surfaces with multivalued Hamiltonian function. The unexpected discoveries of their topological properties that were made in 1980s and 1990s have finally led to nontrivial physical conclusions along the lines of the so-called geometric strong magnetic field limit. A very fruitful new point of view comes from the reformulation of that problem in terms of quasiperiodic functions and an extension to higher dimensions made in 1999. One may say that, for single crystal normal metals put in a magnetic field, the semiclassical trajectories of electrons in the space of quasimomenta are exactly the level lines of the quasiperiodic function with three quasiperiods that is the dispersion relation restricted to a plane orthogonal to the magnetic field. General studies of the topological properties of levels of quasiperiodic functions on the plane with any number of quasiperiods were started in 1999 when certain ideas were formulated for the case of four quasiperiods. The last section of this work contains a complete proof of these results. Some new physical applications of the general problem were found recently.Comment: latex2e, 27 pages, 7 figure
    corecore