584 research outputs found

    Iterative CT reconstruction using shearlet-based regularization

    Get PDF
    In computerized tomography, it is important to reduce the image noise without increasing the acquisition dose. Extensive research has been done into total variation minimization for image denoising and sparse-view reconstruction. However, TV minimization methods show superior denoising performance for simple images (with little texture), but result in texture information loss when applied to more complex images. Since in medical imaging, we are often confronted with textured images, it might not be beneficial to use TV. Our objective is to find a regularization term outperforming TV for sparse-view reconstruction and image denoising in general. A recent efficient solver was developed for convex problems, based on a split-Bregman approach, able to incorporate regularization terms different from TV. In this work, a proof-of-concept study demonstrates the usage of the discrete shearlet transform as a sparsifying transform within this solver for CT reconstructions. In particular, the regularization term is the 1-norm of the shearlet coefficients. We compared our newly developed shearlet approach to traditional TV on both sparse-view and on low-count simulated and measured preclinical data. Shearlet-based regularization does not outperform TV-based regularization for all datasets. Reconstructed images exhibit small aliasing artifacts in sparse-view reconstruction problems, but show no staircasing effect. This results in a slightly higher resolution than with TV-based regularization

    First order algorithms in variational image processing

    Get PDF
    Variational methods in imaging are nowadays developing towards a quite universal and flexible tool, allowing for highly successful approaches on tasks like denoising, deblurring, inpainting, segmentation, super-resolution, disparity, and optical flow estimation. The overall structure of such approaches is of the form D(Ku)+αR(u)minu{\cal D}(Ku) + \alpha {\cal R} (u) \rightarrow \min_u ; where the functional D{\cal D} is a data fidelity term also depending on some input data ff and measuring the deviation of KuKu from such and R{\cal R} is a regularization functional. Moreover KK is a (often linear) forward operator modeling the dependence of data on an underlying image, and α\alpha is a positive regularization parameter. While D{\cal D} is often smooth and (strictly) convex, the current practice almost exclusively uses nonsmooth regularization functionals. The majority of successful techniques is using nonsmooth and convex functionals like the total variation and generalizations thereof or 1\ell_1-norms of coefficients arising from scalar products with some frame system. The efficient solution of such variational problems in imaging demands for appropriate algorithms. Taking into account the specific structure as a sum of two very different terms to be minimized, splitting algorithms are a quite canonical choice. Consequently this field has revived the interest in techniques like operator splittings or augmented Lagrangians. Here we shall provide an overview of methods currently developed and recent results as well as some computational studies providing a comparison of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure

    Modeling and Development of Iterative Reconstruction Algorithms in Emerging X-ray Imaging Technologies

    Get PDF
    Many new promising X-ray-based biomedical imaging technologies have emerged over the last two decades. Five different novel X-ray based imaging technologies are discussed in this dissertation: differential phase-contrast tomography (DPCT), grating-based phase-contrast tomography (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed tomography (CBCT), and in-line X-ray phase contrast (XPC) tomosynthesis. For each imaging modality, one or more specific problems prevent them being effectively or efficiently employed in clinical applications have been discussed. Firstly, to mitigate the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods in DPCT, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction. Secondly, to improve image quality in grating-based phase-contrast tomography, we incorporate 2nd order statistical properties of the object property sinograms, including correlations between them, into the formulation of an advanced multi-channel (MC) image reconstruction algorithm, which reconstructs three object properties simultaneously. We developed an advanced algorithm based on the proximal point algorithm and the augmented Lagrangian method to rapidly solve the MC reconstruction problem. Thirdly, to mitigate image artifacts that arise from reduced-view and/or noisy decomposed sinogram data in K-edge imaging, we exploited the inherent sparseness of typical K-edge objects and incorporated the statistical properties of the decomposed sinograms to formulate two penalized weighted least square problems with a total variation (TV) penalty and a weighted sum of a TV penalty and an l1-norm penalty with a wavelet sparsifying transform. We employed a fast iterative shrinkage/thresholding algorithm (FISTA) and splitting-based FISTA algorithm to solve these two PWLS problems. Fourthly, to enable advanced iterative algorithms to obtain better diagnostic images and accurate patient positioning information in image-guided radiation therapy for CBCT in a few minutes, two accelerated variants of the FISTA for PLS-based image reconstruction are proposed. The algorithm acceleration is obtained by replacing the original gradient-descent step by a sub-problem that is solved by use of the ordered subset concept (OS-SART). In addition, we also present efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units (GPUs). Finally, we employed our developed accelerated version of FISTA for dealing with the incomplete (and often noisy) data inherent to in-line XPC tomosynthesis which combines the concepts of tomosynthesis and in-line XPC imaging to utilize the advantages of both for biological imaging applications. We also investigate the depth resolution properties of XPC tomosynthesis and demonstrate that the z-resolution properties of XPC tomosynthesis is superior to that of conventional absorption-based tomosynthesis. To investigate all these proposed novel strategies and new algorithms in these different imaging modalities, we conducted computer simulation studies and real experimental data studies. The proposed reconstruction methods will facilitate the clinical or preclinical translation of these emerging imaging methods

    Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation

    Get PDF
    A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT) devices that employ sequential scanning is their long acquisition time. In previous work, we demonstrated how to use compressed sensing techniques to improve upon this: images with good spatial resolution and contrast can be obtained from suitably sub-sampled PAT data acquired by novel acoustic scanning systems if sparsity-constrained image reconstruction techniques such as total variation regularization are used. Now, we show how a further increase of image quality can be achieved for imaging dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional temporal redundancy of the data by coupling the previously used spatial image reconstruction models with sparsity-constrained motion estimation models. While simulated data from a two-dimensional numerical phantom will be used to illustrate the main properties of this recently developed joint-image-reconstruction-and-motion-estimation framework, measured data from a dynamic experimental phantom will also be used to demonstrate their potential for challenging, large-scale, real-world, three-dimensional scenarios. The latter only becomes feasible if a carefully designed combination of tailored optimization schemes is employed, which we describe and examine in more detail

    Blind Ptychographic Phase Retrieval via Convergent Alternating Direction Method of Multipliers

    Get PDF
    Ptychography has risen as a reference X-ray imaging technique: it achieves resolutions of one billionth of a meter, macroscopic field of view, or the capability to retrieve chemical or magnetic contrast, among other features. A ptychographyic reconstruction is normally formulated as a blind phase retrieval problem, where both the image (sample) and the probe (illumination) have to be recovered from phaseless measured data. In this article we address a nonlinear least squares model for the blind ptychography problem with constraints on the image and the probe by maximum likelihood estimation of the Poisson noise model. We formulate a variant model that incorporates the information of phaseless measurements of the probe to eliminate possible artifacts. Next, we propose a generalized alternating direction method of multipliers designed for the proposed nonconvex models with convergence guarantee under mild conditions, where their subproblems can be solved by fast element-wise operations. Numerically, the proposed algorithm outperforms state-of-the-art algorithms in both speed and image quality.Comment: 23 page
    corecore