382 research outputs found

    Approaching Capacity at High-Rates with Iterative Hard-Decision Decoding

    Full text link
    A variety of low-density parity-check (LDPC) ensembles have now been observed to approach capacity with message-passing decoding. However, all of them use soft (i.e., non-binary) messages and a posteriori probability (APP) decoding of their component codes. In this paper, we show that one can approach capacity at high rates using iterative hard-decision decoding (HDD) of generalized product codes. Specifically, a class of spatially-coupled GLDPC codes with BCH component codes is considered, and it is observed that, in the high-rate regime, they can approach capacity under the proposed iterative HDD. These codes can be seen as generalized product codes and are closely related to braided block codes. An iterative HDD algorithm is proposed that enables one to analyze the performance of these codes via density evolution (DE).Comment: 22 pages, this version accepted to the IEEE Transactions on Information Theor

    On some new approaches to practical Slepian-Wolf compression inspired by channel coding

    Get PDF
    This paper considers the problem, first introduced by Ahlswede and Körner in 1975, of lossless source coding with coded side information. Specifically, let X and Y be two random variables such that X is desired losslessly at the decoder while Y serves as side information. The random variables are encoded independently, and both descriptions are used by the decoder to reconstruct X. Ahlswede and Körner describe the achievable rate region in terms of an auxiliary random variable. This paper gives a partial solution for the optimal auxiliary random variable, thereby describing part of the rate region explicitly in terms of the distribution of X and Y
    • …
    corecore