224 research outputs found

    Kiired ja kvaasikiired lahendusmeetodid nõrgalt singulaarsete Fredholmi teist liiki integraalvõrrandite jaoks

    Get PDF
    Doktoritöös käsitletakse lineaarsete Fredholmi teist liiki integraalvõrrandite ligikaudse lahendamisega seotud probleeme situatsioonis, kus võrrandi tuum võib argumentide kokkulangemise korral olla iseärane (nõrgalt singulaarne). Tuuma iseärasus toob reeglina kaasa integraalvõrrandi lahendi iseärase käitumise integreerimispiirkonna raja lähedal ning raskused kiirete lahendusmeetodite konstrueerimisel niisuguste võrrandite jaoks. Töö põhitulemuseks on kiirete ja kvaasikiirete meetodite väljatöötamine nimetatud võrrandite korral. Kiire meetod tähendab siin meetodit võrrandi lähislahendite leidmiseks, mis antud ülesannete klassi korral annab lähislahenditele optimaalset järku täpsuse võimalikult väikese aritmeetiliste tehete arvu korral. Vajalikud veahinnangud on saadud lähteülesande periodiseerimise kaudu, mille puhul integraalvõrrandi lähislahendite leidmine taandub perioodiliste funktsioonide aproksimeerimisele trigonomeetriliste polünoomide abil.In the present thesis the bounds of fast solving Fredholm integral equations of the second kind with a possible weak diagonal singularity of the kernel and certain boundary singularities of the derivatives of the free term has been discussed in a situation when the information about the smooth coefficient functions in the kernel and about the free term is restricted to a given number of their sample values. In a fast solver, the conditions of optimal accuracy and minimal arithmetical operations (complexity of the solver) are met. We mean the order optimality and order minimal work on a class of problems; the class of problems is defined by the smoothness conditions which have been set on the kernel and free term of the underlying problem.https://www.ester.ee/record=b536058

    Post-Processing Techniques and Wavelet Applications for Hammerstein Integral Equations

    Get PDF
    This dissertation is focused on the varieties of numerical solutions of nonlinear Hammerstein integral equations. In the first part of this dissertation, several acceleration techniques for post-processed solutions of the Hammerstein equation are discussed. The post-processing techniques are implemented based on interpolation and extrapolation. In this connection, we generalize the results in [29] and [28] to nonlinear integral equations of the Hammerstein type. Post-processed collocation solutions are shown to exhibit better accuracy. Moreover, an extrapolation technique for the Galerkin solution of Hammerstein equation is also obtained. This result appears new even in the setting of the linear Fredholm equation. In the second half of this dissertation, the wavelet-collocation technique of solving nonlinear Hammerstein integral equation is discussed. The main objective is to establish a fast wavelet-collocation method for Hammerstein equation by using a \u27linearization\u27 technique. The sparsity in the Jacobian matrix takes place in the fast wavelet-collocation method for Hammerstein equation with smooth as well as weakly singular kernels. A fast algorithm is based upon the block truncation strategy which was recently proposed in [10]. A multilevel augmentation method for the linearized Hammerstein equation is subsequently proposed which further accelerates the solution process while maintaining the order of convergence. Numerical examples are given throughout this dissertation

    Keskosa interpolatsioonil põhinevad meetodid nõrgalt singulaarsete integraalvõrrandite lahendamiseks

    Get PDF
    Paljud keemia, polümeeride füüsika, matemaatilise füüsika jt teadusalade probleemid on formuleeritavad integraalvõrrandite kujul ning nende probleemide käsitlus taandub integraalvõrrandite lahendamisele või kvalitatiivsele uurimisele. Integraalvõrrandeid, mida saab täpselt lahendada, on suhteliselt vähe, seega on väga olulised meetodid võrrandite numbriliseks lahendamiseks. Käesolevas doktoritöös pakume välja kaks kõrget järku numbrilist meetodit, mis ei kasuta lineaarse teist liiki singulaarsustega Fredholmi integraalvõrrandi lahendamiseks ebaühtlast võrku. Need meetodid on kollokatsioonimeetod ja korrutise integreerimise meetod. Nimetatud meetodid põhinevad keskosa interpolatsioonil polünoomidega ühtlasel võrgul ja silendaval muutujate vahetusel. Lõigu keskosas on interpolatsioonivea hinnang ligikaudu 2m korda täpsem kui kogu lõigul. Lisaks on interpolatsiooniprotsess ühtlasel võrgul lõigu keskosas m-i kasvades stabiilne. Muutujate vahetuse abil parendame me võrrandi täpse lahendi käitumist. Doktoritöös on kirjeldatud toodud meetodite koondumist ja koondumiskiirustThere are a number of problems from many different fields, for example chemistry, physics of polymers and mathematical physics, which are directly formulated in terms of integral equations; and there are problems that are represented in terms of differential equations with auxiliary conditions, but which can be reduced to integral equations. There are relatively few integral equations which can be solved exactly, hence, numerical schemes are required for dealing with these equations in a proper manner. In this thesis we propose two new classes of high order numerical methods, which do not need graded grids for solving linear Fredholm integral equations of the second kind with singularities. The methods are developed by means of the 'central part' interpolation by polynomials on the uniform grid and smoothing change of variables. In the central parts of the interval, the estimates of interpolation error are approximately 2m times more precise than on the whole interval. In the central parts of the interval, the interpolation process on the uniform grid also has good stability properties as m increases. With the help of a change of variables we improve the boundary behaviour of the exact solution of the problem. The convergence and the convergence order of methods is studied

    A collocation IGA-BEM for 3D potential problems on unbounded domains

    Full text link
    In this paper the numerical solution of potential problems defined on 3D unbounded domains is addressed with Boundary Element Methods (BEMs), since in this way the problem is studied only on the boundary, and thus any finite approximation of the infinite domain can be avoided. The isogeometric analysis (IGA) setting is considered and in particular B-splines and NURBS functions are taken into account. In order to exploit all the possible benefits from using spline spaces, an important point is the development of specific cubature formulas for weakly and nearly singular integrals. Our proposal for this aim is based on spline quasi-interpolation and on the use of a spline product formula. Besides that, a robust singularity extraction procedure is introduced as a preliminary step and an efficient function-by-function assembly phase is adopted. A selection of numerical examples confirms that the numerical solutions reach the expected convergence orders.Comment: 17 pages, 4 figure

    On spline quasi-interpolation through dimensions

    Get PDF

    Central part interpolation schemes for a class of fractional initial value problems

    Get PDF
    We consider an initial value problem for linear fractional integro-differential equations with weakly singular kernels. Using an integral equation reformulation of the underlying problem, a collocation method based on the central part interpolation by continuous piecewise polynomials on the uniform grid is constructed and analysed. Optimal convergence order of the proposed method is established and confirmed by numerical experiments

    Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind

    Get PDF
    AbstractIn this paper we propose new numerical methods for linear Fredholm integral equations of the second kind with weakly singular kernels. The methods are developed by means of the Sinc approximation with smoothing transformations, which is an effective technique against the singularities of the equations. Numerical examples show that the methods achieve exponential convergence, and in this sense the methods improve conventional results where only polynomial convergence have been reported so far

    Hägusad teist liiki integraalvõrrandid

    Get PDF
    Käesolevas doktoritöös on uuritud hägusaid teist liiki integraalvõrrandeid. Need võrrandid sisaldavad hägusaid funktsioone, s.t. funktsioone, mille väärtused on hägusad arvud. Me tõestasime tulemuse sileda tuumaga hägusate Volterra integraalvõrrandite lahendite sileduse kohta. Kui integraalvõrrandi tuum muudab märki, siis integraalvõrrandi lahend pole üldiselt sile. Nende võrrandite lahendamiseks me vaatlesime kollokatsioonimeetodit tükiti lineaarsete ja tükiti konstantsete funktsioonide ruumis. Kasutades lahendi sileduse tulemusi tõestasime meetodite koonduvuskiiruse. Me vaatlesime ka nõrgalt singulaarse tuumaga hägusaid Volterra integraalvõrrandeid. Uurisime lahendi olemasolu, ühesust, siledust ja hägusust. Ülesande ligikaudseks lahendamiseks kasutasime kollokatsioonimeetodit tükiti polünoomide ruumis. Tõestasime meetodite koonduvuskiiruse ning uurisime lähislahendi hägusust. Nii analüüs kui ka numbrilised eksperimendid näitavad, et gradueeritud võrke kasutades saame parema koonduvuskiiruse kui ühtlase võrgu korral. Teist liiki hägusate Fredholmi integraalvõrrandite lahendamiseks pakkusime uue lahendusmeetodi, mis põhineb kõigi võrrandis esinevate funktsioonide lähendamisel Tšebõšovi polünoomidega. Uurisime nii täpse kui ka ligikaudse lahendi olemasolu ja ühesust. Tõestasime meetodi koonduvuse ja lähislahendi hägususe.In this thesis we investigated fuzzy integral equations of the second kind. These equations contain fuzzy functions, i.e. functions whose values are fuzzy numbers. We proved a regularity result for solution of fuzzy Volterra integral equations with smooth kernels. If the kernel changes sign, then the solution is not smooth in general. We proposed collocation method with triangular and rectangular basis functions for solving these equations. Using the regularity result we estimated the order of convergence of these methods. We also investigated fuzzy Volterra integral equations with weakly singular kernels. The existence, regularity and the fuzziness of the exact solution is studied. Collocation methods on discontinuous piecewise polynomial spaces are proposed. A convergence analysis is given. The fuzziness of the approximate solution is investigated. Both the analysis and numerical methods show that graded mesh is better than uniform mesh for these problems. We proposed a new numerical method for solving fuzzy Fredholm integral equations of the second kind. This method is based on approximation of all functions involved by Chebyshev polynomials. We analyzed the existence and uniqueness of both exact and approximate fuzzy solutions. We proved the convergence and fuzziness of the approximate solution.https://www.ester.ee/record=b539569
    corecore