6 research outputs found

    An improved adaptive online neural control for robot manipulator systems using integral Barrier Lyapunov functions

    Get PDF
    Conventional Neural Network (NN) control for robots uses radial basis function (RBF) and for n-link robot with online control, the number of nodes and weighting matrix increases exponentially, which requires a number of calculations to be performed within a very short duration of time. This consumes a large amount of computational memory and may subsequently result in system failure. To avoid this problem, this paper proposes an innovative NN robot control using a dimension compressed RBF (DCRBF) for a class of n-degree of freedom (DOF) robot with full-state constraints. The proposed DCRBF NN control scheme can compress the nodes and weighting matrix greatly and provide an output that meets the prescribed tracking performance. Additionally, adaption laws are designed to compensate for the internal and external uncertainties. Finally, the effectiveness of the proposed method has been verified by simulations. The results indicate that the proposed method, integral Barrier Lyapunov Functions (iBLF), avoids the existing defects of Barrier Lyapunov Functions (BLF) and prevents the constraint violations

    Advanced Computing and Related Applications Leveraging Brain-inspired Spiking Neural Networks

    Full text link
    In the rapid evolution of next-generation brain-inspired artificial intelligence and increasingly sophisticated electromagnetic environment, the most bionic characteristics and anti-interference performance of spiking neural networks show great potential in terms of computational speed, real-time information processing, and spatio-temporal information processing. Data processing. Spiking neural network is one of the cores of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure and information transfer mode of biological neural networks. This paper summarizes the strengths, weaknesses and applicability of five neuronal models and analyzes the characteristics of five network topologies; then reviews the spiking neural network algorithms and summarizes the unsupervised learning algorithms based on synaptic plasticity rules and four types of supervised learning algorithms from the perspectives of unsupervised learning and supervised learning; finally focuses on the review of brain-like neuromorphic chips under research at home and abroad. This paper is intended to provide learning concepts and research orientations for the peers who are new to the research field of spiking neural networks through systematic summaries

    Robust Multimode Function Synchronization of Memristive Neural Networks with Parameter Perturbations and Time-Varying Delays

    Get PDF
    Publisher Copyright: IEEE Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Currently, some works on studying complete synchronization of dynamical systems are usually restricted to its two special cases: 1) power-rate synchronization and 2) exponential synchronization. Therefore, how to give a generalization of these types of complete synchronization by the mathematical expression is an open question that needs to be urgently solved. To begin with, this article proposes multimode function synchronization by the mathematical expression for the first time, which is a generalization of exponential synchronization, power-rate synchronization, logarithmical synchronization, and so on. Moreover, two adaptive controllers are designed to achieve robust multimode function synchronization of memristive neural networks (MNNs) with mismatched parameters and uncertain parameters. Each adaptive controller includes function r(t) and update gain σ. By choosing different types of r(t), multiple types of complete synchronization, including power-rate synchronization and exponential synchronization can be obtained. And update gain σ can be used to adjust the speed of synchronization. Therefore, our results enlarge and strengthen the existing results. Two examples are put forward to verify the validity of our results.Peer reviewedFinal Accepted Versio

    Asymptotic Stability and Asymptotic Synchronization of Memristive Regulatory-Type Networks

    Get PDF
    Memristive regulatory-type networks are recently emerging as a potential successor to traditional complementary resistive switch models. Qualitative analysis is useful in designing and synthesizing memristive regulatory-type networks. In this paper, we propose several succinct criteria to ensure global asymptotic stability and global asymptotic synchronization for a general class of memristive regulatory-type networks. The experimental simulations also show the performance of theoretical results
    corecore