26 research outputs found

    Spiking neural models & machine learning for systems neuroscience: Learning, Cognition and Behavior.

    Get PDF
    Learning, cognition and the ability to navigate, interact and manipulate the world around us by performing appropriate behavior are hallmarks of artificial as well as biological intelligence. In order to understand how intelligent behavior can emerge from computations of neural systems, this thesis suggests to consider and study learning, cognition and behavior simultaneously to obtain an integrative understanding. This involves building detailed functional computational models of nervous systems that can cope with sensory processing, learning, memory and motor control to drive appropriate behavior. The work further considers how the biological computational substrate of neurons, dendrites and action potentials can be successfully used as an alternative to current artificial systems to solve machine learning problems. It challenges the simplification of currently used rate-based artificial neurons, where computational power is sacrificed by mathematical convenience and statistical learning. To this end, the thesis explores single spiking neuron computations for cognition and machine learning problems as well as detailed functional networks thereof that can solve the biologically relevant foraging behavior in flying insects. The obtained results and insights are new and relevant for machine learning, neuroscience and computational systems neuroscience. The thesis concludes by providing an outlook how application of current machine learning methods can be used to obtain a statistical understanding of larger scale brain systems. In particular, by investigating the functional role of the cerebellar-thalamo-cortical system for motor control in primates

    Bio-inspired learning and hardware acceleration with emerging memories

    Get PDF
    Machine Learning has permeated many aspects of engineering, ranging from the Internet of Things (IoT) applications to big data analytics. While computing resources available to implement these algorithms have become more powerful, both in terms of the complexity of problems that can be solved and the overall computing speed, the huge energy costs involved remains a significant challenge. The human brain, which has evolved over millions of years, is widely accepted as the most efficient control and cognitive processing platform. Neuro-biological studies have established that information processing in the human brain relies on impulse like signals emitted by neurons called action potentials. Motivated by these facts, the Spiking Neural Networks (SNNs), which are a bio-plausible version of neural networks have been proposed as an alternative computing paradigm where the timing of spikes generated by artificial neurons is central to its learning and inference capabilities. This dissertation demonstrates the computational power of the SNNs using conventional CMOS and emerging nanoscale hardware platforms. The first half of this dissertation presents an SNN architecture which is trained using a supervised spike-based learning algorithm for the handwritten digit classification problem. This network achieves an accuracy of 98.17% on the MNIST test data-set, with about 4X fewer parameters compared to the state-of-the-art neural networks achieving over 99% accuracy. In addition, a scheme for parallelizing and speeding up the SNN simulation on a GPU platform is presented. The second half of this dissertation presents an optimal hardware design for accelerating SNN inference and training with SRAM (Static Random Access Memory) and nanoscale non-volatile memory (NVM) crossbar arrays. Three prominent NVM devices are studied for realizing hardware accelerators for SNNs: Phase Change Memory (PCM), Spin Transfer Torque RAM (STT-RAM) and Resistive RAM (RRAM). The analysis shows that a spike-based inference engine with crossbar arrays of STT-RAM bit-cells is 2X and 5X more efficient compared to PCM and RRAM memories, respectively. Furthermore, the STT-RAM design has nearly 6X higher throughput per unit Watt per unit area than that of an equivalent SRAM-based (Static Random Access Memory) design. A hardware accelerator with on-chip learning on an STT-RAM memory array is also designed, requiring 1616 bits of floating-point synaptic weight precision to reach the baseline SNN algorithmic performance on the MNIST dataset. The complete design with STT-RAM crossbar array achieves nearly 20X higher throughput per unit Watt per unit mm^2 than an equivalent design with SRAM memory. In summary, this work demonstrates the potential of spike-based neuromorphic computing algorithms and its efficient realization in hardware based on conventional CMOS as well as emerging technologies. The schemes presented here can be further extended to design spike-based systems that can be ubiquitously deployed for energy and memory constrained edge computing applications

    Multi-Sample Online Learning for Probabilistic Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning via the dynamic, online, event-driven processing of binary time series. Most existing learning algorithms for SNNs are based on deterministic neuronal models, such as leaky integrate-and-fire, and rely on heuristic approximations of backpropagation through time that enforce constraints such as locality. In contrast, probabilistic SNN models can be trained directly via principled online, local, update rules that have proven to be particularly effective for resource-constrained systems. This paper investigates another advantage of probabilistic SNNs, namely their capacity to generate independent outputs when queried over the same input. It is shown that the multiple generated output samples can be used during inference to robustify decisions and to quantify uncertainty -- a feature that deterministic SNN models cannot provide. Furthermore, they can be leveraged for training in order to obtain more accurate statistical estimates of the log-loss training criterion, as well as of its gradient. Specifically, this paper introduces an online learning rule based on generalized expectation-maximization (GEM) that follows a three-factor form with global learning signals and is referred to as GEM-SNN. Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration when increasing the number of samples used for inference and training.Comment: Submitte

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    Cognitive Learning and Memory Systems Using Spiking Neural Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Neuromorphic engineering needs closed-loop benchmarks

    Get PDF
    Neuromorphic engineering aims to build (autonomous) systems by mimicking biological systems. It is motivated by the observation that biological organisms—from algae to primates—excel in sensing their environment, reacting promptly to their perils and opportunities. Furthermore, they do so more resiliently than our most advanced machines, at a fraction of the power consumption. It follows that the performance of neuromorphic systems should be evaluated in terms of real-time operation, power consumption, and resiliency to real-world perturbations and noise using task-relevant evaluation metrics. Yet, following in the footsteps of conventional machine learning, most neuromorphic benchmarks rely on recorded datasets that foster sensing accuracy as the primary measure for performance. Sensing accuracy is but an arbitrary proxy for the actual system's goal—taking a good decision in a timely manner. Moreover, static datasets hinder our ability to study and compare closed-loop sensing and control strategies that are central to survival for biological organisms. This article makes the case for a renewed focus on closed-loop benchmarks involving real-world tasks. Such benchmarks will be crucial in developing and progressing neuromorphic Intelligence. The shift towards dynamic real-world benchmarking tasks should usher in richer, more resilient, and robust artificially intelligent systems in the future

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    corecore